Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Function of NKG2D in natural killer cell–mediated rejection of mouse bone marrow grafts

Abstract

Irradiation-resistant natural killer (NK) cells in an F1 recipient can reject parental bone marrow, and host NK cells can also prevent engraftment of allogeneic bone marrow. We show here that repopulating bone marrow cells in certain mouse strains expressed retinoic acid early inducible 1 proteins, which are ligands for the activating NKG2D NK cell receptor. Treatment with a neutralizing antibody to NKG2D prevented rejection of parental BALB/c bone marrow in (C57BL/6 × BALB/c) F1 recipients and allowed engraftment of allogeneic BALB.B bone marrow in C57BL/6 recipients. Additionally, bone marrow from C57BL/6 mice transgenic for retinoic acid early inducible 1ε was rejected by syngeneic mice but was accepted after treatment with antibody to NKG2D. If other stem cells or tissues upregulate expression of NKG2D ligands after transplantation, NKG2D may contribute to graft rejection in immunocompetent hosts.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Rae-1 is expressed on BALB/c but not C57BL/6 bone marrow cells.
Figure 2: NKG2D blocks CB6F1 recipient rejection of BALB/c bone marrow.
Figure 3: NKG2D-independent rejection of C57BL/6 parental bone marrow grafts in CB6F1 recipients.
Figure 4: Rejection of syngeneic bone marrow cells expressing Rae-1.
Figure 5: Rejection of Rae-1ε-transgenic C57BL/6 bone marrow in DAP10-deficient and DAP12-deficient C57BL/6 recipients.
Figure 6: Impairment of bone marrow rejection in Rae-1ε-transgenic mice.

Similar content being viewed by others

References

  1. Lanier, L.L. NK cell recognition. Annu. Rev. Immunol. 23, 225–274 (2005).

    Article  CAS  Google Scholar 

  2. Kiessling, R. et al. Evidence for a similar or common mechanism for natural killer cell activity and resistance to hemopoietic grafts. Eur. J. Immunol. 7, 655–663 (1977).

    Article  CAS  Google Scholar 

  3. Lotzova, E., Savary, C.A. & Pollack, S.B. Prevention of rejection of allogeneic bone marrow transplants by NK 1.1 antiserum. Transplantation 35, 490–494 (1983).

    Article  CAS  Google Scholar 

  4. Murphy, W.J., Kumar, V. & Bennett, M. Rejection of bone marrow allografts by mice with severe combined immune deficiency (scid). Evidence that natural killer cells can mediate the specificity of marrow graft rejection. J. Exp. Med. 165, 1212–1217 (1987).

    Article  CAS  Google Scholar 

  5. Murphy, W.J., Kumar, V. & Bennett, M. Natural killer cells activated with interleukin 2 in vitro can be adoptively transferred and mediate hematopoietic histocompatibility-1 antigen-specific bone marrow rejection in vivo. Eur. J. Immunol. 20, 1729–1734 (1990).

    Article  CAS  Google Scholar 

  6. Cudkowicz, G. & Stimpfling, J.H. Induction of immunity and of unresponsiveness to parental marrow grafts in adult F-1 hybrid mice. Nature 204, 450–453 (1964).

    Article  CAS  Google Scholar 

  7. Cudkowicz, G. & Bennett, M. Peculiar immunobiology of bone marrow allografts. II. Rejection of parental grafts by resistant F 1 hybrid mice. J. Exp. Med. 134, 1513–1528 (1971).

    Article  CAS  Google Scholar 

  8. Rembecki, R.M., Kumar, V., David, C.S. & Bennett, M. Bone marrow cell transplants involving intra-H-2 recombinant inbred mouse strains. Evidence that hemopoietic histocompatibility-1 (Hh-1) genes are distinct from H-2D or H-2L. J. Immunol. 141, 2253–2260 (1988).

    CAS  PubMed  Google Scholar 

  9. Sentman, C.L., Hackett, J., Kumar, V. & Bennett, M. Identification of a subset of murine natural killer cells that mediates rejection of Hh-1d but not Hh-1b bone marrow grafts. J. Exp. Med. 170, 191–202 (1989).

    Article  CAS  Google Scholar 

  10. Sentman, C.L., Kumar, V. & Bennett, M. Rejection of bone marrow cell allografts by natural killer cell subsets: 5E6+ cell specificity for Hh-1 determinant 2 shared by H-2d and H-2f. Eur. J. Immunol. 21, 2821–2828 (1991).

    Article  CAS  Google Scholar 

  11. Yu, Y.Y.L. et al. The role of Ly49A and 5E6 (Ly49C) molecules in hybrid resistance mediated by murine natural killer cells against normal T cell blasts. Immunity 4, 67–76 (1996).

    Article  CAS  Google Scholar 

  12. Raziuddin, A., Longo, D.L., Mason, L., Ortaldo, J.R. & Murphy, W.J. Ly-49G2+ NK cells are responsible for mediating the rejection of H-2b bone marrow allografts in mice. Int. Immunol. 8, 1833–1839 (1996).

    Article  CAS  Google Scholar 

  13. Raulet, D.H. Roles of the NKG2D immunoreceptor and its ligands. Nat. Rev. Immunol. 3, 781–790 (2003).

    Article  CAS  Google Scholar 

  14. Diefenbach, A. et al. Selective associations with signaling proteins determine stimulatory versus costimulatory activity of NKG2D. Nat. Immunol. 3, 1142–1149 (2002).

    Article  CAS  Google Scholar 

  15. Radaev, S. & Sun, P.D. Structure and function of natural killer cell surface receptors. Annu. Rev. Biophys. Biomol. Struct. 32, 93–114 (2003).

    Article  CAS  Google Scholar 

  16. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  Google Scholar 

  17. Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. & Raulet, D.H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat. Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  18. Carayannopoulos, L.N., Naidenko, O.V., Fremont, D.H. & Yokoyama, W.M. Murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J. Immunol. 169, 4079–4083 (2002).

    Article  CAS  Google Scholar 

  19. Nomura, M. et al. Genomic structures and characterization of Rae1 family members encoding GPI-anchored cell surface proteins and expressed predominantly in embryonic mouse brain. J. Biochem. 120, 987–995 (1996).

    Article  CAS  Google Scholar 

  20. Zou, Z., Nomura, M., Takihara, Y., Yasunaga, T. & Shimada, K. Isolation and characterization of retinoic acid-inducible cDNA clones in F9 cells: a novel cDNA family encodes cell surface proteins sharing partial homology with MHC class I molecules. J. Biochem. 119, 319–328 (1996).

    Article  CAS  Google Scholar 

  21. Cerwenka, A. & Lanier, L.L. NKG2D ligands: unconventional MHC class I-like molecules exploited by viruses and cancer. Tissue Antigens 61, 335–343 (2003).

    Article  CAS  Google Scholar 

  22. Malarkannan, S. et al. The molecular and functional characterization of a dominant minor H antigen, H60. J. Immunol. 161, 3501–3509 (1998).

    CAS  PubMed  Google Scholar 

  23. Ogasawara, K. et al. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20, 757–767 (2004).

    Article  CAS  Google Scholar 

  24. Ogasawara, K. et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18, 41–51 (2003).

    Article  CAS  Google Scholar 

  25. George, T.C., Ortaldo, J.R., Lemieux, S., Kumar, V. & Bennett, M. Tolerance and alloreactivity of the Ly49D subset of murine NK cells. J. Immunol. 163, 1859–1867 (1999).

    CAS  PubMed  Google Scholar 

  26. Lin, J. et al. Ly49I NK cell receptor transgene inhibition of rejection of H2b mouse bone marrow transplants. J. Immunol. 164, 1793–1799 (2000).

    Article  Google Scholar 

  27. Raziuddin, A. et al. Differential effects of the rejection of bone marrow allografts by the depletion of activating versus inhibiting Ly-49 natural killer cell subsets. J. Immunol. 160, 87–94 (1998).

    CAS  PubMed  Google Scholar 

  28. Bix, M. et al. Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 349, 329–331 (1991).

    Article  CAS  Google Scholar 

  29. Nakamura, M.C. et al. Mouse Ly-49D recognizes H-2Dd and activates natural killer cell cytotoxicity. J. Exp. Med. 189, 493–500 (1999).

    Article  CAS  Google Scholar 

  30. George, T.C., Mason, L.H., Ortaldo, J.R., Kumar, V. & Bennett, M. Positive recognition of MHC class I molecules by the Ly49D receptor of murine NK cells. J. Immunol. 162, 2035–2043 (1999).

    CAS  PubMed  Google Scholar 

  31. Drizlikh, G., Schmidt-Sole, J. & Yankelevich, B. Involvement of the K and I regions of the H-2 complex in resistance to hemopoietic allografts. J. Exp. Med. 159, 1070–1082 (1984).

    Article  CAS  Google Scholar 

  32. Aguila, H.L. & Weissman, I.L. Hematopoietic stem cells are not direct cytotoxic targets of natural killer cells. Blood 87, 1225–1231 (1996).

    CAS  PubMed  Google Scholar 

  33. Ehrlich, L.I.R. et al. Engagement of NKG2D by cognate ligand or antibody alone is insufficient to mediate costimulation of human and mouse CD8+ T cells. J. Immunol. 174, 1922–1931 (2005).

    Article  CAS  Google Scholar 

  34. Bakker, A.B.H. et al. DAP12-deficient mice fail to develop autoimmunity due to impaired antigen priming. Immunity 13, 345–353 (2000).

    Article  CAS  Google Scholar 

  35. Lodoen, M. et al. NKG2D-mediated natural killer cell protection against cytomegalovirus is impaired by viral gp40 modulation of retinoic acid early inducible 1 gene molecules. J. Exp. Med. 197, 1245–1253 (2003).

    Article  CAS  Google Scholar 

  36. Lodoen, M. et al. The cytomegalovirus m155 gene product subverts NK cell antiviral protection by disruption of H60–NKG2D interactions. J. Exp. Med. 200, 1075–1081 (2004).

    Article  CAS  Google Scholar 

  37. Murphy, W.J., Kumar, V. & Bennett, M. Acute rejection of murine bone marrow allografts by natural killer cells and T cells: Differences in kinetics and target antigens recognized. J. Exp. Med. 166, 1499–1509 (1987).

    Article  CAS  Google Scholar 

  38. Ogasawara, K. et al. Requirement for IRF-1 in the microenvironment supporting development of natural killer cells. Nature 391, 700–703 (1998).

    Article  CAS  Google Scholar 

  39. Ogasawara, K., Yoshinaga, S.K. & Lanier, L.L. Inducible costimulator costimulates cytotoxic activity and IFN-γ production in activated murine NK cells. J. Immunol. 169, 3676–3685 (2002).

    Article  CAS  Google Scholar 

  40. Lanier, L.L., Ruitenberg, J.J. & Phillips, J.H. Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J. Immunol. 141, 3478–3485 (1988).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Killeen and J. Dietrich of the University of California, San Francisco Comprehensive Cancer Center Transgenic and Targeted Mutagenesis Shared Resource for the generation of Rae-1ε-transgenic mice; all Lanier lab members for technical assistance and discussions; and T. Sasazuki for discussions. Supported by the National Institutes of Health (CA95137), the Human Frontier Science Program (K.O.), the Uehara Memorial Foundation (K.O.), the Irvington Institute Foundation (K.O.), the University of California, San Francisco Liver Center (P30-DK26743 to K.O.) and the American Cancer Society (L.L.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lewis L Lanier.

Ethics declarations

Competing interests

These studies were supported in part by Schering Plough BioPharma.

Supplementary information

Supplementary Fig. 1

NKG2D mAb CX5 does not deplete NK cells in vivo. (PDF 417 kb)

Supplementary Fig. 2

H-2 incompatibility is not required for NKG2D-dependent BM rejection. (PDF 49 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ogasawara, K., Benjamin, J., Takaki, R. et al. Function of NKG2D in natural killer cell–mediated rejection of mouse bone marrow grafts. Nat Immunol 6, 938–945 (2005). https://doi.org/10.1038/ni1236

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1236

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing