Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance

Abstract

Upregulation of the inducible gene products MICA (human) and Rae-1 (mouse) may promote tumor surveillance and autoimmunity by engaging the activating receptor NKG2D on natural killer (NK) cells and T cells. Nevertheless, sustained expression of MICA by tumors can also elicit NKG2D downregulation, perhaps indicating 'immunoevasion'. Investigating this paradox, we report here that constitutive Rae-1ε transgene expression in normal epithelium elicited local and systemic NKG2D downregulation, generalized but reversible defects in NK cell–mediated cytotoxicity and mild CD8+ T cell defects. The extent of NKG2D downregulation correlated well with the incidence and progression of cutaneous carcinogenesis, emphasizing the utility of NKG2D as a marker of tumor resistance. Thus, NKG2D engagement is a natural mediator of immunosurveillance, which can be compromised by locally sustained ligand expression but potentially restored by innate immune activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Transgenic Rae-1ε protein expression from an epithelium-specific or globally active promotor.
Figure 2: NKG2D is downregulated in vivo in Rae-1-transgenic mice to amounts comparable to those of Rae-1+ tumor-bearing mice.
Figure 3: Defects in Rae-1-targeted natural cytotoxicity in vivo.
Figure 4: In vivo stimulation of NK cells by poly(I:C) restores impaired natural cytotoxicity responses to Rae-1+ targets and MHClo targets.
Figure 5: Effective generation of antigen-specific memory cytotoxic T cells in Rae-1-transgenic mice despite downregulated NKG2D.
Figure 6: Increased tumor susceptibility in Rae-1-transgenic mice.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  2. Girardi, M. et al. Regulation of cutaneous malignancy by γδ T cells. Science 294, 605–609 (2001).

    Article  CAS  Google Scholar 

  3. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  Google Scholar 

  4. Diefenbach, A., Jamieson, A.M., Liu, S.D., Shastri, N. & Raulet, D.H. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat. Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  5. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  Google Scholar 

  6. Jamieson, A.M. et al. The role of the NKG2D immunoreceptor in immune cell activation and natural killing. Immunity 17, 19–29 (2002).

    Article  CAS  Google Scholar 

  7. Pende, D. et al. Major histocompatibility complex class I-related chain A and UL16-binding protein expression on tumor cell lines of different histotypes: analysis of tumor susceptibility to NKG2D-dependent natural killer cell cytotoxicity. Cancer Res. 62, 6178–6186 (2002).

    CAS  PubMed  Google Scholar 

  8. Groh, V. et al. Broad tumor-associated expression and recognition by tumor-derived γδ T cells of MICA and MICB. Proc. Natl. Acad. Sci. USA 96, 6879–6884 (1999).

    Article  CAS  Google Scholar 

  9. Vetter, C.S. et al. Expression of stress-induced MHC class I related chain molecules on human melanoma. J. Invest. Dermatol. 118, 600–605 (2002).

    Article  CAS  Google Scholar 

  10. Cerwenka, A., Baron, J.L. & Lanier, L.L. Ectopic expression of retinoic acid early inducible-1 gene (RAE-1) permits natural killer cell-mediated rejection of a MHC class I-bearing tumor in vivo. Proc. Natl. Acad. Sci. USA 98, 11521–11526 (2001).

    Article  CAS  Google Scholar 

  11. Diefenbach, A., Jensen, E.R., Jamieson, A.M. & Raulet, D.H. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature 413, 165–171 (2001).

    Article  CAS  Google Scholar 

  12. Tieng, V. et al. Binding of Escherichia coli adhesin AfaE to CD55 triggers cell-surface expression of the MHC class I-related molecule MICA. Proc. Natl. Acad. Sci. USA 99, 2977–2982 (2002).

    Article  CAS  Google Scholar 

  13. Groh, V. et al. Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells. Nat. Immunol. 2, 255–260 (2001).

    Article  CAS  Google Scholar 

  14. Cosman, D. et al. ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein UL16 and stimulate NK cytotoxicity through the NKG2D receptor. Immunity 14, 123–133 (2001).

    Article  CAS  Google Scholar 

  15. Groh, V., Bruhl, A., El Gabalawy, H., Nelson, J.L. & Spies, T. Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 100, 9452–9457 (2003).

    Article  CAS  Google Scholar 

  16. Ogasawara, K. et al. Impairment of NK cell function by NKG2D modulation in NOD mice. Immunity 18, 41–51 (2003).

    Article  CAS  Google Scholar 

  17. Hue, S. et al. A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21, 367–377 (2004).

    Article  Google Scholar 

  18. Meresse, B. et al. Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21, 357–366 (2004).

    Article  CAS  Google Scholar 

  19. Ogasawara, K. et al. NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20, 757–767 (2004).

    Article  CAS  Google Scholar 

  20. Groh, V., Wu, J., Yee, C. & Spies, T. Tumour-derived soluble MIC ligands impair expression of NKG2D and T-cell activation. Nature 419, 734–738 (2002).

    Article  CAS  Google Scholar 

  21. Salih, H.R. et al. Functional expression and release of ligands for the activating immunoreceptor NKG2D in leukemia. Blood 102, 1389–1396 (2003).

    Article  CAS  Google Scholar 

  22. Doubrovina, E.S. et al. Evasion from NK cell immunity by MHC class I chain-related molecules expressing colon adenocarcinoma. J. Immunol. 171, 6891–6899 (2003).

    Article  CAS  Google Scholar 

  23. Derynck, R., Akhurst, R.J. & Balmain, A. TGF-β signaling in tumor suppression and cancer progression. Nat. Genet. 29, 117–129 (2001).

    Article  CAS  Google Scholar 

  24. Castriconi, R. et al. Transforming growth factor β1 inhibits expression of NKp30 and NKG2D receptors: consequences for the NK-mediated killing of dendritic cells. Proc. Natl. Acad. Sci. USA 100, 4120–4125 (2003).

    Article  CAS  Google Scholar 

  25. Lee, J.C., Lee, K.M., Kim, D.W. & Heo, D.S. Elevated TGF-β1 secretion and down-modulation of NKG2D underlies impaired NK cytotoxicity in cancer patients. J. Immunol. 172, 7335–7340 (2004).

    Article  CAS  Google Scholar 

  26. Carroll, J.M., Albers, K.M., Garlick, J.A., Harrington, R. & Taichman, L.B. Tissue- and stratum-specific expression of the human involucrin promoter in transgenic mice. Proc. Natl. Acad. Sci. USA 90, 10270–10274 (1993).

    Article  CAS  Google Scholar 

  27. Kim, S. et al. In vivo developmental stages in murine natural killer cell maturation. Nat. Immunol. 3, 523–528 (2002).

    Article  Google Scholar 

  28. Diebold, S.S. et al. Viral infection switches non-plasmacytoid dendritic cells into high interferon producers. Nature 424, 324–328 (2003).

    Article  CAS  Google Scholar 

  29. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  30. Johansson, S.E., Hall, H., Bjorklund, J. & Hoglund, P. Broadly impaired NK cell function in non-obese diabetic mice is partially restored by NK cell activation in vivo and by IL-12/IL-18 in vitro. Int. Immunol. 16, 1–11 (2004).

    Article  CAS  Google Scholar 

  31. Karre, K. NK cells, MHC class I molecules and the missing self. Scand. J. Immunol. 55, 221–228 (2002).

    Article  CAS  Google Scholar 

  32. Koller, B.H., Marrack, P., Kappler, J.W. & Smithies, O. Normal development of mice deficient in β2M, MHC class I proteins, and CD8+ T cells. Science 248, 1227–1230 (1990).

    Article  CAS  Google Scholar 

  33. Kelly, A. et al. Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 355, 641–644 (1992).

    Article  CAS  Google Scholar 

  34. Millrain, M. et al. Examination of HY response: T cell expansion, immunodominance, and cross-priming revealed by HY tetramer analysis. J. Immunol. 167, 3756–3764 (2001).

    Article  CAS  Google Scholar 

  35. Girardi, M. et al. Characterizing the protective component of the αβ T cell response to transplantable squamous cell carcinoma. J. Invest. Dermatol. 122, 699–706 (2004).

    Article  CAS  Google Scholar 

  36. Salih, H.R., Rammensee, H.G. & Steinle, A. Cutting edge: down-regulation of MICA on human tumors by proteolytic shedding. J. Immunol. 169, 4098–4102 (2002).

    Article  CAS  Google Scholar 

  37. Smyth, M.J., Crowe, N.Y. & Godfrey, D.I. NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma. Int. Immunol. 13, 459–463 (2001).

    Article  CAS  Google Scholar 

  38. Kiessling, R. & Haller, O. Natural killer cells in the mouse: an alternative immune surveillance mechanism? Contemp. Top. Immunobiol. 8, 171–201 (1978).

    Article  CAS  Google Scholar 

  39. Martin-Fontecha, A. et al. Induced recruitment of NK cells to lymph nodes provides IFN-γ for T(H)1 priming. Nat. Immunol. 5, 1260–1265 (2004).

    Article  CAS  Google Scholar 

  40. Girardi, M. et al. The distinct contributions of murine T cell receptor (TCR)γδ+ and TCRαβ+ T cells to different stages of chemically induced skin cancer. J. Exp. Med. 198, 747–755 (2003).

    Article  CAS  Google Scholar 

  41. Gao, Y. et al. γδ T cells provide an early source of interferon γ in tumor immunity. J. Exp. Med. 198, 433–442 (2003).

    Article  CAS  Google Scholar 

  42. Zuany-Amorim, C., Hastewell, J. & Walker, C. Toll-like receptors as potential therapeutic targets for multiple diseases. Nat. Rev. Drug Discov. 1, 797–807 (2002).

    Article  CAS  Google Scholar 

  43. Shires, J., Theodoridis, E. & Hayday, A.C. Biological insights into TCRγδ+ and TCRαβ+ intraepithelial lymphocytes provided by serial analysis of gene expression (SAGE). Immunity 15, 419–434 (2001).

    Article  CAS  Google Scholar 

  44. Carayannopoulos, L.N., Naidenko, O.V., Fremont, D.H. & Yokoyama, W.M. Cutting edge: murine UL16-binding protein-like transcript 1: a newly described transcript encoding a high-affinity ligand for murine NKG2D. J. Immunol. 169, 4079–4083 (2002).

    Article  CAS  Google Scholar 

  45. Stephens, H.A. MICA and MICB genes: can the enigma of their polymorphism be resolved? Trends Immunol. 22, 378–385 (2001).

    Article  CAS  Google Scholar 

  46. Niwa, H., Yamamura, K. & Miyazaki, J. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108, 193–199 (1991).

    Article  CAS  Google Scholar 

  47. Mallick-Wood, C.A. et al. Conservation of T cell receptor conformation in epidermal γδ cells with disrupted primary V-γ gene usage. Science 279, 1729–1733 (1998).

    Article  CAS  Google Scholar 

  48. Findly, R.C., Roberts, S.J. & Hayday, A.C. Dynamic response of murine gut intraepithelial T cells after infection by the coccidian parasite Eimeria. Eur. J. Immunol. 23, 2557–2564 (1993).

    Article  CAS  Google Scholar 

  49. Masuda, H. et al. High levels of RAE-1 isoforms on mouse tumor cell lines assessed by anti-”pan” RAE-1 antibody confer tumor susceptibility to NK cells. Biochem. Biophys. Res. Commun. 290, 140–145 (2002).

    Article  CAS  Google Scholar 

  50. Coles, R.M., Mueller, S.N., Heath, W.R., Carbone, F.R. & Brooks, A.G. Progression of armed CTL from draining lymph node to spleen shortly after localized infection with herpes simplex virus 1. J. Immunol. 168, 834–838 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Brooks (University of Newcastle), J. Dyson and E. Simpson (Medical Research Council Unit, Hammersmith Hospital), and members of the laboratory for advice and assistance; M. Allen for help with immunohistology and inducible transgenics; R. Ahmed (Emory), J. Shires and D. Barber for lymphocytic choriomeningitis virus infection; F. Watt for an involucrin promoter; G. Bates for the chicken β-actin promoter; and A. Steinle for sharing data before publication. This paper is dedicated to the memory of J. Scheckner. Supported by the Wellcome Trust (D.E.O. and A.C.H.) and the National Institutes of Health (R.E.T. and M.G.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian C Hayday.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Generating Rae-1 transgenic mice. (PDF 2723 kb)

Supplementary Fig. 2

Rae-1 transgene expression in lymphocyte populations (PDF 4487 kb)

Supplementary Fig. 3

Specific loss of NKG2D staining in Rae-1 transgenic mice. (PDF 5029 kb)

Supplementary Fig. 4

Rae-1 is sufficient to drive NKG2D downregulation in vitro. (PDF 6952 kb)

Supplementary Fig. 5

In vivo natural cytotoxicity to Rae-1 targets is dependent on NK cells but not αβ T cells. (PDF 2120 kb)

Supplementary Fig. 6

HY-specific CD8 memory T cell cytotoxicity in Rae-1 transgenic mice. (PDF 1727 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oppenheim, D., Roberts, S., Clarke, S. et al. Sustained localized expression of ligand for the activating NKG2D receptor impairs natural cytotoxicity in vivo and reduces tumor immunosurveillance. Nat Immunol 6, 928–937 (2005). https://doi.org/10.1038/ni1239

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1239

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing