Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling

Abstract

Interleukin 2 signaling is believed to be critically involved in several aspects of CD25+ CD4+ regulatory T cell biology, such as intrathymic development, peripheral survival and suppressive function. Here we have analyzed the effects of interleukin 2 or CD25 deficiency on agonist-driven thymic development and the peripheral homeostasis of an antigen-specific population of regulatory T cells positive for forkhead family transcription factor Foxp3 and have correlated our observations with polyclonal suppressor populations. We found that the differentiation, acquisition of functional capacity and formation of a sizeable pool of suppressor T cells in the thymus was independent of interleukin 2 signaling, but that interleukin 2 was essential for the survival of mature Foxp3+ regulatory T cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Selection of Foxp3+CD25+ Treg cells in TCR-HA × pgk-HA mice.
Figure 2: Thymic phenotype and Foxp3 expression in Il2+/+ and Il2−/− TCR-HA × pgk-HA mice.
Figure 3: Cycling is similar for thymocytes progressing toward a naive or Treg phenotype and is not affected by the absence of IL-2.
Figure 4: IL-2 dependence of peripheral CD25+TCR-HA+ CD4 T cells.
Figure 5: Phenotype of Il2ra−/− TCR-HA × pgk-HA mice.
Figure 6: Competitive bone marrow reconstitution.
Figure 7: Frequency of Foxp3+ cells and cycling of CD25+ CD4 SP cells in non–TCR-transgenic IL-2+/+ and IL-2−/− mice.

Similar content being viewed by others

References

  1. Schorle, H., Holtschke, T., Hunig, T., Schimpl, A. & Horak, I. Development and function of T cells in mice rendered interleukin-2 deficient by gene targeting. Nature 352, 621–624 (1991).

    Article  CAS  PubMed  Google Scholar 

  2. Suzuki, H. et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor β. Science 268, 1472–1476 (1995).

    Article  CAS  PubMed  Google Scholar 

  3. Willerford, D.M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Sadlack, B. et al. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 75, 253–261 (1993).

    Article  CAS  PubMed  Google Scholar 

  5. Suzuki, H., Zhou, Y.W., Kato, M., Mak, T.W. & Nakashima, I. Normal regulatory α/β T cells effectively eliminate abnormally activated T cells lacking the interleukin 2 receptor β in vivo. J. Exp. Med. 190, 1561–1572 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kramer, S., Schimpl, A. & Hunig, T. Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J. Exp. Med. 182, 1769–1776 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Almeida, A.R., Legrand, N., Papiernik, M. & Freitas, A.A. Homeostasis of peripheral CD4+ T cells: IL-2Rα and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J. Immunol. 169, 4850–4860 (2002).

    Article  PubMed  Google Scholar 

  8. Roncarolo, M.G., Bacchetta, R., Bordignon, C., Narula, S. & Levings, M.K. Type 1 T regulatory cells. Immunol. Rev. 182, 68–79 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Weiner, H.L. Induction and mechanism of action of transforming growth factor-β-secreting Th3 regulatory cells. Immunol. Rev. 182, 207–214 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Shevach, E.M. CD4+CD25+ suppressor T cells: more questions than answers. Nat. Rev. Immunol. 2, 389–400 (2002).

    Article  CAS  PubMed  Google Scholar 

  11. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Papiernik, M., de Moraes, M.L., Pontoux, C., Vasseur, F. & Penit, C. Regulatory CD4 T cells: expression of IL-2Rα chain, resistance to clonal deletion and IL-2 dependency. Int. Immunol. 10, 371–378 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Itoh, M. et al. Thymus and autoimmunity: production of CD25+CD4+ naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J. Immunol. 162, 5317–5326 (1999).

    CAS  PubMed  Google Scholar 

  14. Klein, L., Khazaie, K. & von Boehmer, H. In vivo dynamics of antigen-specific regulatory T cells not predicted from behavior in vitro. Proc. Natl. Acad. Sci. USA 100, 8886–8891 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Walker, L.S., Chodos, A., Eggena, M., Dooms, H. & Abbas, A.K. Antigen-dependent proliferation of CD4+CD25+ regulatory T cells in vivo. J. Exp. Med. 198, 249–258 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Apostolou, I., Sarukhan, A., Klein, L. & von Boehmer, H. Origin of regulatory T cells with known specificity for antigen. Nat. Immunol. 3, 756–763 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Jordan, M.S. et al. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat. Immunol. 2, 301–306 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Malek, T.R., Yu, A., Vincek, V., Scibelli, P. & Kong, L. CD4 regulatory T cells prevent lethal autoimmunity in IL-2Rβ-deficient mice. Implications for the nonredundant function of IL-2. Immunity 17, 167–178 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Di Santo, J.P. & Rodewald, H.R. In vivo roles of receptor tyrosine kinases and cytokine receptors in early thymocyte development. Curr. Opin. Immunol. 10, 196–207 (1998).

    Article  CAS  PubMed  Google Scholar 

  20. Thornton, A.M., Donovan, E.E., Piccirillo, C.A. & Shevach, E.M. Cutting edge: IL-2 is critically required for the in vitro activation of CD4+CD25+ T cell suppressor function. J. Immunol. 172, 6519–6523 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. de la Rosa, M., Rutz, S., Dorninger, H. & Scheffold, A. Interleukin-2 is essential for CD4+CD25+ regulatory T cell function. Eur. J. Immunol. 34, 2480–2488 (2004).

    Article  CAS  PubMed  Google Scholar 

  22. Malek, T.R., Porter, B.O., Codias, E.K., Scibelli, P. & Yu, A. Normal lymphoid homeostasis and lack of lethal autoimmunity in mice containing mature T cells with severely impaired IL-2 receptors. J. Immunol. 164, 2905–2914 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Furtado, G.C. et al. Regulatory T cells in spontaneous autoimmune encephalomyelitis. Immunol. Rev. 182, 122–134 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Furtado, G.C., Curotto de Lafaille, M.A., Kutchukhidze, N. & Lafaille, J.J. Interleukin 2 signaling is required for CD4+ regulatory T cell function. J. Exp. Med. 196, 851–857 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Setoguchi, R., Hori, S., Takahashi, T. & Sakaguchi, S. Homeostatic maintenance of natural Foxp3+CD25+CD4+ regulatory T cells by interleukin (IL)-2 and induction of autoimmune disease by IL-2 neutralization. J. Exp. Med. 201, 723–735 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bayer, A.L., Yu, A., Adeegbe, D. & Malek, T.R. Essential role for interleukin-2 for CD4+CD25+ T regulatory cell development during the neonatal period. J. Exp. Med. 201, 769–777 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Curotto de Lafaille, M.A., Lino, A.C., Kutchukhidze, N. & Lafaille, J.J. CD25 T cells generate CD25+Foxp3+ regulatory T cells by peripheral expansion. J. Immunol. 173, 7259–7268 (2004).

    Article  CAS  PubMed  Google Scholar 

  28. Malek, T.R. The main function of IL-2 is to promote the development of T regulatory cells. J. Leukoc. Biol. 74, 961–965 (2003).

    Article  CAS  PubMed  Google Scholar 

  29. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Kirberg, J. et al. Thymic selection of CD8+ single positive cells with a class II major histocompatibility complex-restricted receptor. J. Exp. Med. 180, 25–34 (1994).

    Article  CAS  PubMed  Google Scholar 

  33. van Santen, H.M., Benoist, C. & Mathis, D. Number of T reg cells that differentiate does not increase upon encounter of agonist ligand on thymic epithelial cells. J. Exp. Med. 200, 1221–1230 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Apostolou, I. & von Boehmer, H. In vivo instruction of suppressor commitment in naive T cells. J. Exp. Med. 199, 1401–1408 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liang, S. et al. Conversion of CD4+CD25 cells into CD4+CD25+ regulatory T cells in vivo requires B7 costimulation, but not the thymus. J. Exp. Med. 201, 127–137 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hori, S., Haury, M., Lafaille, J.J., Demengeot, J. & Coutinho, A. Peripheral expansion of thymus-derived regulatory cells in anti-myelin basic protein T cell receptor transgenic mice. Eur. J. Immunol. 32, 3729–3735 (2002).

    Article  CAS  PubMed  Google Scholar 

  37. Thornton, A.M., Piccirillo, C.A. & Shevach, E.M. Activation requirements for the induction of CD4+CD25+ T cell suppressor function. Eur. J. Immunol. 34, 366–376 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Bensinger, S.J. et al. Distinct IL-2 receptor signaling pattern in CD4+CD25+ regulatory T cells. J. Immunol. 172, 5287–5296 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Hori, S. & Sakaguchi, S. Foxp3: a critical regulator of the development and function of regulatory T cells. Microbes Infect. 6, 745–751 (2004).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. von Boehmer (Dana Farber Cancer Institute, Boston, Massachusetts) for TCR-HA × pgk-HA mice and for discussions. Supported by Boehringer Ingelheim (Research Institute of Molecular Pathology), the Austrian National Science Fund (Sonderforschungsbereich F023 and Z58-B01) and the European Union (FP6 Integrated Project Eurothymaide).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ludger Klein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

CD25+Foxp3+ Treg are greatly reduced in the periphery of IL-2 deficient mice. (PDF 483 kb)

Supplementary Fig. 2

Phenotype of lymph node cells in Il2ra−/− TCR-HA × pgk-HA mice. (PDF 742 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Cruz, L., Klein, L. Development and function of agonist-induced CD25+Foxp3+ regulatory T cells in the absence of interleukin 2 signaling. Nat Immunol 6, 1152–1159 (2005). https://doi.org/10.1038/ni1264

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1264

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing