Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules

Abstract

Major histocompatibility complex (MHC) class I molecules present thousands of peptides to allow CD8+ T cells to detect abnormal intracellular proteins. The antigen-processing pathway for generating peptides begins in the cytoplasm, and the MHC molecules are loaded in the endoplasmic reticulum. However, the nature of peptide pool in the endoplasmic reticulum and the proteolytic events that occur in this compartment are unclear. We addressed these issues by generating mice lacking the endoplasmic reticulum aminopeptidase associated with antigen processing (ERAAP). We found that loss of ERAAP disrupted the generation of naturally processed peptides in the endoplasmic reticulum, decreased the stability of peptide–MHC class I complexes and diminished CD8+ T cell responses. Thus, trimming of antigenic peptides by ERAAP in the endoplasmic reticulum is essential for the generation of the normal repertoire of processed peptides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Targeted deletion of exons 4–8 of the gene encoding ERAAP results in loss of ERAAP protein expression in mice with homozygous deletion.
Figure 2: Loss of ERAAP decreases expression of MHC class I but not MHC class II molecules on the cell surface.
Figure 3: The pMHC class I complexes assemble normally but are relatively unstable on the surfaces of ERAAP-deficient cells.
Figure 4: The pMHC class I repertoire is disrupted in ERAAP-deficient cells.
Figure 5: Antigen processing of full-length KOVAK protein but not a minimal SHL8–H-2Kb precursor is dependent on ERAAP.
Figure 6: ERAAP- and TAP-deficient cells do not trim antigenic precursors in the ER.
Figure 7: ERAAP limits the presentation of final SVL9 peptide by destroying it in the ER.
Figure 8: ERAAP-deficient mice are impaired in their pMHC class I–specific CD8+ but not pMHC class II–specific CD4+ T cell responses toward HY antigens.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Shastri, N., Schwab, S. & Serwold, T. Producing nature's gene-chips. The generation of peptides for display by MHC class I molecules. Annu. Rev. Immunol. 20, 463–493 (2002).

    Article  CAS  Google Scholar 

  2. Falk, K., Rotzschke, O., Stevanovic, S., Jung, G. & Rammensee, H-G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351, 290–296 (1991).

    Article  CAS  Google Scholar 

  3. Townsend, A.R., Bastin, J., Gould, K. & Brownlee, G.G. Cytotoxic T lymphocytes recognize influenza haemagglutinin that lacks a signal sequence. Nature 324, 575–577 (1986).

    Article  CAS  Google Scholar 

  4. Attaya, M. et al. Ham-2 corrects the class I antigen-processing defect in RMA-S cells. Nature 355, 647–649 (1992).

    Article  CAS  Google Scholar 

  5. Yewdell, J.W., Reits, E. & Neefjes, J. Making sense of mass destruction: quantitating MHC class I antigen presentation. Nat. Rev. Immunol. 3, 952–961 (2003).

    Article  CAS  Google Scholar 

  6. Rock, K.L., York, I.A., Saric, T. & Goldberg, A.L. Protein degradation and the generation of MHC class I-presented peptides. Adv. Immunol. 80, 1–70 (2002).

    Article  CAS  Google Scholar 

  7. Kloetzel, P.M. Generation of major histocompatibility complex class I antigens: functional interplay between proteasomes and TPPII. Nat. Immunol. 5, 661–669 (2004).

    Article  CAS  Google Scholar 

  8. Falk, K., Rötzschke, O. & Rammensee, H.G. Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348, 248–251 (1990).

    Article  CAS  Google Scholar 

  9. Serwold, T., Gaw, S. & Shastri, N. ER aminopeptidases generate a unique pool of peptides for MHC class I molecules. Nat. Immunol. 2, 644–651 (2001).

    Article  CAS  Google Scholar 

  10. Neisig, A. et al. Major differences in transporter associated with antigen presentation (TAP)-dependent translocation of MHC class I-presentable peptides and the effect of flanking sequences. J. Immunol. 154, 1273–1279 (1995).

    CAS  PubMed  Google Scholar 

  11. Van Endert, P.M. et al. The peptide-binding motif for the human transporter associated with antigen processing. J. Exp. Med. 182, 1883–1895 (1995).

    Article  CAS  Google Scholar 

  12. Rammensee, H.G., Bachmann, J. & Stevanovic, S. in MHC Ligands and Peptide Motifs, 1–457 (Landes Bioscience, Austin, Texas, 1997).

    Google Scholar 

  13. Lauvau, G. et al. Human transporters associated with antigen processing (TAPs) select epitope precursor peptides for processing in the endoplasmic reticulum and presentation to T cells. J. Exp. Med. 190, 1227–1240 (1999).

    Article  CAS  Google Scholar 

  14. Fruci, D., Niedermann, G., Butler, R.H. & van Endert, P.M. Efficient MHC class I-independent amino-terminal trimming of epitope precursor peptides in the endoplasmic reticulum. Immunity 15, 467–476 (2001).

    Article  CAS  Google Scholar 

  15. Brouwenstijn, N., Serwold, T. & Shastri, N. MHC class I molecules can direct proteolytic cleavage of antigenic precursors in the endoplasmic reticulum. Immunity 15, 95–104 (2001).

    Article  CAS  Google Scholar 

  16. Mo, X.Y., Cascio, P., Lemerise, K., Goldberg, A.L. & Rock, K. Distinct proteolytic processes generate the C and N termini of MHC class I-binding peptides. J. Immunol. 163, 5851–5859 (1999).

    CAS  PubMed  Google Scholar 

  17. Serwold, T., Gonzalez, F., Kim, J., Jacob, R. & Shastri, N. ERAAP customizes peptides for MHC class I molecules in the endoplasmic reticulum. Nature 419, 480–483 (2002).

    Article  CAS  Google Scholar 

  18. Saric, T. et al. An IFN-γ-induced aminopeptidase in the ER, ERAP1, trims precursors to MHC class I-presented peptides. Nat. Immunol. 3, 1169–1176 (2002).

    Article  CAS  Google Scholar 

  19. Hattori, A., Matsumoto, H., Mizutani, S. & Tsujimoto, M. Molecular cloning of adipocyte-derived leucine aminopeptidase highly related to placental leucine aminopeptidase/oxytocinase. J. Biochem. 125, 931–938 (1999).

    Article  CAS  Google Scholar 

  20. Schomburg, L., Kollmus, H., Friedrichsen, S. & Bauer, K. Molecular characterization of a puromycin-insensitive leucyl-specific aminopeptidase, PILS-AP. Eur. J. Biochem. 267, 3198–3207 (2000).

    Article  CAS  Google Scholar 

  21. Miyashita, H. et al. A mouse orthologue of puromycin-insensitive leucyl-specific aminopeptidase is expressed in endothelial cells and plays an important role in angiogenesis. Blood 99, 3241–3249 (2002).

    Article  CAS  Google Scholar 

  22. Cui, X. et al. Identification of ARTS-1 as a novel TNFR1-binding protein that promotes TNFR1 ectodomain shedding. J. Clin. Invest. 110, 515–526 (2002).

    Article  CAS  Google Scholar 

  23. York, I.A. et al. The ER aminopeptidase ERAP1 enhances or limits antigen presentation by trimming epitopes to 8–9 residues. Nat. Immunol. 3, 1177–1184 (2002).

    Article  CAS  Google Scholar 

  24. Townsend, A. et al. Association of class I major histocompatibility heavy and light chains induced by viral peptides. Nature 340, 443–448 (1989).

    Article  CAS  Google Scholar 

  25. Kunisawa, J. & Shastri, N. The group II chaperonin TRiC protects proteolytic intermediates from degradation in the MHC class I antigen processing pathway. Mol. Cell 12, 565–576 (2003).

    Article  CAS  Google Scholar 

  26. Karttunen, J., Sanderson, S. & Shastri, N. Detection of rare antigen presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens. Proc. Natl. Acad. Sci. USA 89, 6020–6024 (1992).

    Article  CAS  Google Scholar 

  27. Malarkannan, S., Goth, S., Buchholz, D.R. & Shastri, N. The role of MHC class I molecules in the generation of endogenous peptide/MHC complexes. J. Immunol. 154, 585–598 (1995).

    CAS  PubMed  Google Scholar 

  28. Goldrath, A.W. & Bevan, M.J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    Article  CAS  Google Scholar 

  29. Simpson, E., Scott, D. & Chandler, P. The male-specific histocompatibility antigen, H-Y: A history of transplantation, immune response genes, sex determination and expression cloning. Annu. Rev. Immunol. 15, 39–61 (1997).

    Article  CAS  Google Scholar 

  30. Tanioka, T. et al. Human leukocyte-derived arginine aminopeptidase. The third member of the oxytocinase subfamily of aminopeptidases. J. Biol. Chem. 278, 32275–32283 (2003).

    Article  CAS  Google Scholar 

  31. Saveanu, L. et al. Concerted peptide trimming by human ERAP1 and ERAP2 aminopeptidase complexes in the endoplasmic reticulum. Nat. Immunol. 6, 689–697 (2005).

    Article  CAS  Google Scholar 

  32. Falk, K. et al. Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele specific T cell epitope forecast. J. Exp. Med. 174, 425–434 (1991).

    Article  CAS  Google Scholar 

  33. Cresswell, P., Bangia, N., Dick, T. & Diedrich, G. The nature of the MHC class I peptide loading complex. Immunol. Rev. 172, 21–28 (1999).

    Article  CAS  Google Scholar 

  34. Grandea, A.G. et al. Impaired assembly yet normal trafficking of MHC class I molecules in tapasin mutant mice. Immunity 13, 213–222 (2000).

    Article  CAS  Google Scholar 

  35. Garbi, N. et al. Impaired immune responses and altered peptide repertoire in tapasin-deficient mice. Nat. Immunol. 1, 234–238 (2000).

    Article  CAS  Google Scholar 

  36. Williams, A.P., Peh, C.A., Purcell, A.W., McCluskey, J. & Elliott, T. Optimization of the MHC class I peptide cargo is dependent on tapasin. Immunity 16, 509–520 (2002).

    Article  CAS  Google Scholar 

  37. Ackerman, A.L., Kyritsis, C., Tampe, R. & Cresswell, P. Access of soluble antigens to the endoplasmic reticulum can explain cross-presentation by dendritic cells. Nat. Immunol. 6, 107–113 (2005).

    Article  CAS  Google Scholar 

  38. Ramirez-Solis, R., Davis, A.C. & Bradley, A. Gene targeting in embryonic stem cells. Methods Enzymol. 225, 855–878 (1993).

    Article  CAS  Google Scholar 

  39. Lander, M.R., Moll, B. & Rowe, W.P. A procedure for culture of cells from mouse tail biopsies: brief communication. J. Natl. Cancer Inst. 60, 477–478 (1978).

    CAS  PubMed  Google Scholar 

  40. Bhattacharya, D., Logue, E.C., Bakkour, S., DeGregori, J. & Sha, W.C. Identification of gene function by cyclical packaging rescue of retroviral cDNA libraries. Proc. Natl. Acad. Sci. USA 99, 8838–8843 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank E. James, H. Nolla and D. King for assistance; and N. Blanchard and J. Shugart for comments on the manuscript. Supported by the National Institutes of Health (N.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilabh Shastri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hammer, G., Gonzalez, F., Champsaur, M. et al. The aminopeptidase ERAAP shapes the peptide repertoire displayed by major histocompatibility complex class I molecules. Nat Immunol 7, 103–112 (2006). https://doi.org/10.1038/ni1286

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1286

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing