Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

HIV disease: fallout from a mucosal catastrophe?

Abstract

The pathogenesis of human immunodeficiency virus has long been thought to center on a gradual depletion of CD4+ T cells, with an average of 100 cells lost per microliter of blood per year. However, studies of macaques infected with simian immunodeficiency virus and humans infected with human immunodeficiency virus have shown that the infection rapidly kills most CD4+ T cells at mucosal surfaces. Although most CD4+ T cells reside at these sites, the magnitude of this assault on the immune system is not reflected in the peripheral blood. Here we consider models of human immunodeficiency virus disease pathogenesis given those findings and propose a hypothesis to account for particular aspects of the disease during the chronic phase of infection that can be directly attributed to early depletion of mucosal CD4+ T cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decrease in peripheral blood CD4+ T cells.
Figure 2: Cycle of HIV disease pathogenesis: a hypothesis.
Figure 3: Decrease in total-body CD4+ T cells.

Similar content being viewed by others

References

  1. Pantaleo, G. et al. HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease. Nature 362, 355–358 (1993).

    Article  CAS  Google Scholar 

  2. Embretson, J. et al. Massive covert infection of helper T lymphocytes and macrophages by HIV during the incubation period of AIDS. Nature 362, 359–362 (1993).

    Article  CAS  Google Scholar 

  3. Ho, D.D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373, 123–126 (1995).

    Article  CAS  Google Scholar 

  4. Brenchley, J.M. et al. T-cell subsets that harbor human immunodeficiency virus (HIV) in vivo: implications for HIV pathogenesis. J. Virol. 78, 1160–1168 (2004).

    Article  CAS  Google Scholar 

  5. Douek, D.C., Picker, L.J. & Koup, R.A. T cell dynamics in HIV-1 infection. Annu. Rev. Immunol. 21, 265–304 (2003).

    Article  CAS  Google Scholar 

  6. Grossman, Z. et al. CD4+ T-cell depletion in HIV infection: are we closer to understanding the cause? Nat. Med. 8, 319–323 (2002).

    Article  CAS  Google Scholar 

  7. Davey, R.T., Jr. et al. HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc. Natl. Acad. Sci. USA 96, 15109–15114 (1999).

    Article  CAS  Google Scholar 

  8. Tesselaar, K. et al. Lethal T cell immunodeficiency induced by chronic costimulation via CD27–CD70 interactions. Nat. Immunol. 4, 49–54 (2003).

    Article  CAS  Google Scholar 

  9. Veazey, R.S. et al. Gastrointestinal tract as a major site of CD4+ T cell depletion and viral replication in SIV infection. Science 280, 427–431 (1998).

    Article  CAS  Google Scholar 

  10. Veazey, R.S., Marx, P.A. & Lackner, A.A. Vaginal CD4+ T cells express high levels of CCR5 and are rapidly depleted in simian immunodeficiency virus infection. J. Infect. Dis. 187, 769–776 (2003).

    Article  CAS  Google Scholar 

  11. Brenchley, J.M. et al. CD4+ T cell depletion during all stages of HIV disease occurs predominantly in the gastrointestinal tract. J. Exp. Med. 200, 749–759 (2004).

    Article  CAS  Google Scholar 

  12. Mehandru, S. et al. Primary HIV-1 infection is associated with preferential depletion of CD4+ T lymphocytes from effector sites in the gastrointestinal tract. J. Exp. Med. 200, 761–770 (2004).

    Article  CAS  Google Scholar 

  13. Mattapallil, J.J. et al. Massive infection and loss of memory CD4+ T cells in multiple tissues during acute SIV infection. Nature 434, 1093–1097 (2005).

    Article  CAS  Google Scholar 

  14. Li, Q. et al. Peak SIV replication in resting memory CD4+ T cells depletes gut lamina propria CD4+ T cells. Nature 434, 1148–1152 (2005).

    Article  CAS  Google Scholar 

  15. Lim, S.G. et al. Loss of mucosal CD4 lymphocytes is an early feature of HIV infection. Clin. Exp. Immunol. 92, 448–454 (1993).

    Article  CAS  Google Scholar 

  16. Clayton, F., Snow, G., Reka, S. & Kotler, D.P. Selective depletion of rectal lamina propria rather than lymphoid aggregate CD4 lymphocytes in HIV infection. Clin. Exp. Immunol. 107, 288–292 (1997).

    Article  CAS  Google Scholar 

  17. Schneider, T., Ullrich, R. & Zeitz, M. The immunologic aspects of human immunodeficiency virus infection in the gastrointestinal tract. Semin. Gastrointest. Dis. 7, 19–29 (1996).

    CAS  PubMed  Google Scholar 

  18. Guadalupe, M. et al. Severe CD4+ T-cell depletion in gut lymphoid tissue during primary human immunodeficiency virus type 1 infection and substantial delay in restoration following highly active antiretroviral therapy. J. Virol. 77, 11708–11717 (2003).

    Article  CAS  Google Scholar 

  19. Giorgi, J.V. et al. Shorter survival in advanced human immunodeficiency virus type 1 infection is more closely associated with T lymphocyte activation than with plasma virus burden or virus chemokine coreceptor usage. J. Infect. Dis. 179, 859–870 (1999).

    Article  CAS  Google Scholar 

  20. Douek, D.C. et al. Evidence for increased T cell turnover and decreased thymic output in HIV infection. J. Immunol. 167, 6663–6668 (2001).

    Article  CAS  Google Scholar 

  21. Schacker, T.W. et al. Collagen deposition in HIV-1 infected lymphatic tissues and T cell homeostasis. J. Clin. Invest. 110, 1133–1139 (2002).

    Article  CAS  Google Scholar 

  22. Dion, M.L. et al. HIV infection rapidly induces and maintains a substantial suppression of thymocyte proliferation. Immunity 21, 757–768 (2004).

    Article  CAS  Google Scholar 

  23. Picker, L.J. et al. Insufficient production and tissue delivery of CD4+ memory T cells in rapidly progressive simian immunodeficiency virus infection. J. Exp. Med. 200, 1299–1314 (2004).

    Article  CAS  Google Scholar 

  24. Smed-Sorensen, A. et al. Differential susceptibility to human immunodeficiency virus type 1 infection of myeloid and plasmacytoid dendritic cells. J. Virol. 79, 8861–8869 (2005).

    Article  Google Scholar 

  25. Eggena, M.P. et al. Depletion of regulatory T cells in HIV infection is associated with immune activation. J. Immunol. 174, 4407–4414 (2005).

    Article  CAS  Google Scholar 

  26. Macpherson, A.J. & Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004).

    Article  CAS  Google Scholar 

  27. Acheson, D.W. & Luccioli, S. Microbial-gut interactions in health and disease. Mucosal immune responses. Best Pract. Res. Clin. Gastroenterol. 18, 387–404 (2004).

    Article  CAS  Google Scholar 

  28. Kieper, W.C. et al. Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J. Immunol. 174, 3158–3163 (2005).

    Article  CAS  Google Scholar 

  29. Cooke, K.R. et al. Tumor necrosis factor-alpha production to lipopolysaccharide stimulation by donor cells predicts the severity of experimental acute graft-versus-host disease. J. Clin. Invest. 102, 1882–1891 (1998).

    Article  CAS  Google Scholar 

  30. van Bekkum, D.W., de Vries, M.J. & van der Waay, D. Lesions characteristic of secondary disease in germfree heterologous radiation chimeras. J. Natl. Cancer Inst. 38, 223–231 (1967).

    CAS  PubMed  Google Scholar 

  31. Cooke, K.R., Olkiewicz, K., Erickson, N. & Ferrara, J.L. The role of endotoxin and the innate immune response in the pathophysiology of acute graft versus host disease. J. Endotoxin Res. 8, 441–448 (2002).

    Article  CAS  Google Scholar 

  32. Kotler, D.P. HIV infection and the gastrointestinal tract. AIDS 19, 107–117 (2005).

    Article  Google Scholar 

  33. Sankaran, S. et al. Gut mucosal T cell responses and gene expression correlate with protection against disease in long-term HIV-1-infected nonprogressors. Proc. Natl. Acad. Sci. USA 102, 9860–9865 (2005).

    Article  CAS  Google Scholar 

  34. Sewell, A.K. et al. Cytotoxic T lymphocyte responses to human immunodeficiency virus: control and escape. Stem Cells 18, 230–244 (2000).

    Article  CAS  Google Scholar 

  35. Lederman, M.M. et al. Prevention of vaginal SHIV transmission in rhesus macaques through inhibition of CCR5. Science 306, 485–487 (2004).

    Article  CAS  Google Scholar 

  36. Lifson, J.D. et al. Containment of simian immunodeficiency virus infection: cellular immune responses and protection from rechallenge following transient postinoculation antiretroviral treatment. J. Virol. 74, 2584–2593 (2000).

    Article  CAS  Google Scholar 

  37. George, M.D., Reay, E., Sankaran, S. & Dandekar, S. Early antiretroviral therapy for simian immunodeficiency virus infection leads to mucosal CD4+ T-cell restoration and enhanced gene expression regulating mucosal repair and regeneration. J. Virol. 79, 2709–2719 (2005).

    Article  CAS  Google Scholar 

  38. Veazey, R.S. et al. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature 438, 99–102 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brenchley, J., Price, D. & Douek, D. HIV disease: fallout from a mucosal catastrophe?. Nat Immunol 7, 235–239 (2006). https://doi.org/10.1038/ni1316

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1316

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing