Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Mother's little helpers: mechanisms of maternal-fetal tolerance

Abstract

The evolutionary adaptation in mammals that allows implantation of their embryos in the mother's womb creates an immunological problem. Although it ensures optimal nourishment and protection of the fetus throughout its early development, intimate contact with the mother's uterine tissue makes the fetus a potential target for her immune system. As half the fetal genes are derived from the father, the developing embryo and placenta must be considered a 'semi-allograft'. Such a mismatched organ transplant would be readily rejected without powerful immune suppression. During pregnancy, however, the semi-allogeneic fetus is protected from assault by the maternal immune system over an extended period of time. The mother's immune system seems to recognize the fetus as 'temporary self'. How this feat is managed is key to understanding immunological tolerance and intervention in treating disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Mechanisms proposed to regulate mouse maternal-fetal tolerance.
Figure 2: Some immune receptors proposed to regulate human maternal-fetal interaction.

Similar content being viewed by others

References

  1. Heard, D.H., Hinde, I.T. & Mynors, L.S. An experimental study of haemolytic disease of the newborn due to isoimmunization of pregnancy. J. Hyg. (Lond.) 47, 119–131 (1949).

    Article  CAS  Google Scholar 

  2. Medawar, P.B. Some immunological and endocrinological problems raised by evolution of viviparity in vertebrates. Symp. Soc. Exp. Biol. 7, 320–328 (1953).

    Google Scholar 

  3. Billingham, R.E., Brent, L. & Medawar, P.B. Activity acquired tolerance of foreign cells. Nature 172, 603–606 (1953).

    Article  CAS  Google Scholar 

  4. Owen, R.D. Immunogenetic consequences of vascular anastomoses between bovine twins. Science 102, 400–401 (1945).

    Article  CAS  Google Scholar 

  5. Medawar, P.B. & Hunt, R. Vulnerability of methylcholanthrene-induced tumours to immunity aroused by syngeneic foetal cells. Nature 271, 164–165 (1978).

    Article  CAS  Google Scholar 

  6. Hammarstrom, S. The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin. Cancer Biol. 9, 67–81 (1999).

    Article  CAS  Google Scholar 

  7. Abrahams, V.M. & Mor, G. Toll-like receptors and their role in the trophoblast. Placenta 26, 540–547 (2005).

    Article  CAS  Google Scholar 

  8. Stallmach, T. & Hebisch, G. Placental pathology: its impact on explaining prenatal and perinatal death. Virchows Arch. 445, 9–16 (2004).

    PubMed  Google Scholar 

  9. Haque, A. & Capron, A. Transplacental transfer of rodent microfilariae induces antigen-specific tolerance in rats. Nature 299, 361–363 (1982).

    Article  CAS  Google Scholar 

  10. Pearson, H. Reproductive immunology: Immunity's pregnant pause. Nature 420, 265–266 (2002).

    Article  CAS  Google Scholar 

  11. Bertrams, J., Kuwert, E. & Lohmeyer, H.H. The specificity of leukocyte antibodies in histocompatibility testing of serum from prima- and multiparas. Bibl. Haematol. 37, 98–106 (1971).

    CAS  PubMed  Google Scholar 

  12. Brambell, F.W.R., Hemmings, W.A. & Henderson, M. in Antibodies and Embryos (Athlone Press, University of London, 1951).

    Google Scholar 

  13. Medawar, P.B. & Sparrow, E.M. The effects of adrenocortical hormones, adrenocorticotrophic hormone and pregnancy on skin transplantation immunity in mice. J. Endocrinol. 14, 240–256 (1956).

    Article  CAS  Google Scholar 

  14. Chaouat, G. & Voisin, G.A. Regulatory T cell subpopulations in pregnancy. I. Evidence for suppressive activity of the early phase of MLR. J. Immunol. 122, 1383–1388 (1979).

    CAS  PubMed  Google Scholar 

  15. Aluvihare, V.R., Kallikourdis, M. & Betz, A.G. Regulatory T cells mediate maternal tolerance to the fetus. Nat. Immunol. 5, 266–271 (2004).

    Article  CAS  Google Scholar 

  16. Tafuri, A., Alferink, J., Moller, P., Hammerling, G.J. & Arnold, B. T cell awareness of paternal alloantigens during pregnancy. Science 270, 630–633 (1995).

    Article  CAS  Google Scholar 

  17. Moffett-King, A. Natural killer cells and pregnancy. Nat. Rev. Immunol. 2, 656–663 (2002).

    Article  CAS  Google Scholar 

  18. Rossant, J. & Cross, J.C. Placental development: lessons from mouse mutants. Nat. Rev. Genet. 2, 538–548 (2001).

    Article  CAS  Google Scholar 

  19. Streilein, J.W. Peripheral tolerance induction: lessons from immune privileged sites and tissues. Transplant. Proc. 28, 2066–2070 (1996).

    CAS  PubMed  Google Scholar 

  20. Ferguson, T.A. & Griffith, T.S. A vision of cell death: insights into immune privilege. Immunol. Rev. 156, 167–184 (1997).

    Article  CAS  Google Scholar 

  21. Aoki, K. et al. Extracellular matrix interacts with soluble CD95L: retention and enhancement of cytotoxicity. Nat. Immunol. 2, 333–337 (2001).

    Article  CAS  Google Scholar 

  22. Kamimura, S., Eguchi, K., Yonezawa, M. & Sekiba, K. Localization and developmental change of indoleamine 2,3-dioxygenase activity in the human placenta. Acta Med. Okayama 45, 135–139 (1991).

    CAS  PubMed  Google Scholar 

  23. Munn, D.H. et al. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191–1193 (1998).

    Article  CAS  Google Scholar 

  24. Baban, B. et al. Indoleamine 2,3-dioxygenase expression is restricted to fetal trophoblast giant cells during murine gestation and is maternal genome specific. J. Reprod. Immunol. 61, 67–77 (2004).

    Article  CAS  Google Scholar 

  25. Hunt, J.S., Vassmer, D., Ferguson, T.A. & Miller, L. Fas ligand is positioned in mouse uterus and placenta to prevent trafficking of activated leukocytes between the mother and the conceptus. J. Immunol. 158, 4122–4128 (1997).

    CAS  PubMed  Google Scholar 

  26. Xu, C. et al. A critical role for murine complement regulator crry in fetomaternal tolerance. Science 287, 498–501 (2000).

    Article  CAS  Google Scholar 

  27. Rooney, I.A., Oglesby, T.J. & Atkinson, J.P. Complement in human reproduction: activation and control. Immunol. Res. 12, 276–294 (1993).

    Article  CAS  Google Scholar 

  28. Piccinni, M.P. et al. Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat. Med. 4, 1020–1024 (1998).

    Article  CAS  Google Scholar 

  29. Lin, H., Mosmann, T.R., Guilbert, L., Tuntipopipat, S. & Wegmann, T.G. Synthesis of T helper 2-type cytokines at the maternal-fetal interface. J. Immunol. 151, 4562–4573 (1993).

    CAS  PubMed  Google Scholar 

  30. Wegmann, T.G., Lin, H., Guilbert, L. & Mosmann, T.R. Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol. Today 14, 353–356 (1993).

    Article  CAS  Google Scholar 

  31. Fallon, P.G. et al. IL-4 induces characteristic Th2 responses even in the combined absence of IL-5, IL-9, and IL-13. Immunity 17, 7–17 (2002).

    Article  CAS  Google Scholar 

  32. Mattsson, R. The non-expression of MHC class II in trophoblast cells. Am. J. Reprod. Immunol. 40, 383–384 (1998).

    Article  CAS  Google Scholar 

  33. van den Elsen, P.J., Holling, T.M., Kuipers, H.F. & van der Stoep, N. Transcriptional regulation of antigen presentation. Curr. Opin. Immunol. 16, 67–75 (2004).

    Article  CAS  Google Scholar 

  34. Peyman, J.A., Nelson, P.J. & Hammond, G.L. HLA-DR genes are silenced in human trophoblasts and stimulation of signal transduction pathways does not circumvent interferon-γ unresponsiveness. Transplant. Proc. 24, 470–471 (1992).

    CAS  PubMed  Google Scholar 

  35. Goodfellow, P.N., Barnstable, C.J., Bodmer, W.F., Snary, D. & Crumpton, M.J. Expression of HLA system antigens on placenta. Transplantation 22, 595–603 (1976).

    Article  CAS  Google Scholar 

  36. Fruh, K., Gruhler, A., Krishna, R.M. & Schoenhals, G.J. A comparison of viral immune escape strategies targeting the MHC class I assembly pathway. Immunol. Rev. 168, 157–166 (1999).

    Article  CAS  Google Scholar 

  37. Kovats, S. et al. A class I antigen, HLA-G, expressed in human trophoblasts. Science 248, 220–223 (1990).

    Article  CAS  Google Scholar 

  38. Ishitani, A. et al. Re-examination of HLA-G polymorphism in African Americans. Immunogenetics 49, 808–811 (1999).

    Article  CAS  Google Scholar 

  39. Collins, K.L. & Baltimore, D. HIV's evasion of the cellular immune response. Immunol. Rev. 168, 65–74 (1999).

    Article  CAS  Google Scholar 

  40. Hiby, S.E. et al. Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J. Exp. Med. 200, 957–965 (2004).

    Article  CAS  Google Scholar 

  41. Parham, P. NK cells and trophoblasts: partners in pregnancy. J. Exp. Med. 200, 951–955 (2004).

    Article  CAS  Google Scholar 

  42. Navarro, F. et al. The ILT2 (LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. Eur. J. Immunol. 29, 277–283 (1999).

    Article  CAS  Google Scholar 

  43. Rajagopalan, S. & Long, E.O. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J. Exp. Med. 189, 1093–1100 (1999).

    Article  CAS  Google Scholar 

  44. Rajagopalan, S. et al. Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLoS Biol. (in the press) (2006).

  45. Colonna, M., Nakajima, H., Navarro, F. & Lopez-Botet, M. A novel family of Ig-like receptors for HLA class I molecules that modulate function of lymphoid and myeloid cells. J. Leukoc. Biol. 66, 375–381 (1999).

    Article  CAS  Google Scholar 

  46. Shiroishi, M. et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc. Natl. Acad. Sci. USA 100, 8856–8861 (2003).

    Article  CAS  Google Scholar 

  47. Chang, C.C. et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat. Immunol. 3, 237–243 (2002).

    Article  CAS  Google Scholar 

  48. Ashkar, A.A. et al. Assessment of requirements for IL-15 and IFN regulatory factors in uterine NK cell differentiation and function during pregnancy. J. Immunol. 171, 2937–2944 (2003).

    Article  CAS  Google Scholar 

  49. Nelson, J.L. Microchimerism in human health and disease. Autoimmunity 36, 5–9 (2003).

    Article  CAS  Google Scholar 

  50. Huppertz, B. & Kingdom, J.C. Apoptosis in the trophoblast–role of apoptosis in placental morphogenesis. J. Soc. Gynecol. Investig. 11, 353–362 (2004).

    Article  CAS  Google Scholar 

  51. Arck, P.C., Ferrick, D.A., Steele-Norwood, D., Croitoru, K. & Clark, D.A. Murine T cell determination of pregnancy outcome: I. Effects of strain, αβ T cell receptor, γδ T cell receptor, and γδ T cell subsets. Am. J. Reprod. Immunol. 37, 492–502 (1997).

    Article  CAS  Google Scholar 

  52. Jin, L.P. et al. Adoptive transfer of paternal antigen-hyporesponsive T cells induces maternal tolerance to the allogeneic fetus in abortion-prone matings. J. Immunol. 173, 3612–3619 (2004).

    Article  CAS  Google Scholar 

  53. Blois, S. et al. Therapy with dendritic cells influences the spontaneous resorption rate in the CBA/J x DBA/2J mouse model. Am. J. Reprod. Immunol. 51, 40–48 (2004).

    Article  Google Scholar 

  54. Zenclussen, A.C. CD4+CD25+ T regulatory cells in murine pregnancy. J. Reprod. Immunol. 65, 101–110 (2005).

    Article  CAS  Google Scholar 

  55. Chaouat, G., Voisin, G.A., Daeron, M. & Kanellopoulos, J. Enhancing antibodies and supressive cells in maternal anti-fetal immune reaction. Ann. Immunol. (Paris) 128, 21–24 (1977).

    CAS  Google Scholar 

  56. Moller, G. Do suppressor T cells exist? Scand. J. Immunol. 27, 247–250 (1988).

    Article  CAS  Google Scholar 

  57. Eichmann, K. Suppression needs a new hypothesis. Scand. J. Immunol. 28, 273–276 (1988).

    Article  CAS  Google Scholar 

  58. Sakaguchi, S., Fukuma, K., Kuribayashi, K. & Masuda, T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J. Exp. Med. 161, 72–87 (1985).

    Article  CAS  Google Scholar 

  59. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M. & Toda, M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J. Immunol. 155, 1151–1164 (1995).

    CAS  PubMed  Google Scholar 

  60. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  61. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  Google Scholar 

  62. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  63. Godfrey, V.L., Wilkinson, J.E., Rinchik, E.M. & Russell, L.B. Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc. Natl. Acad. Sci. USA 88, 5528–5532 (1991).

    Article  CAS  Google Scholar 

  64. Bennett, C.L. et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet. 27, 20–21 (2001).

    Article  CAS  Google Scholar 

  65. Wildin, R.S. et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat. Genet. 27, 18–20 (2001).

    Article  CAS  Google Scholar 

  66. Mattsson, R., Mattsson, A., Holmdahl, R., Whyte, A. & Rook, G.A. Maintained pregnancy levels of oestrogen afford complete protection from post-partum exacerbation of collagen-induced arthritis. Clin. Exp. Immunol. 85, 41–47 (1991).

    Article  CAS  Google Scholar 

  67. Ostensen, M. & Villiger, P.M. Immunology of pregnancy-pregnancy as a remission inducing agent in rheumatoid arthritis. Transpl. Immunol. 9, 155–160 (2002).

    Article  CAS  Google Scholar 

  68. Beagley, K.W. & Gockel, C.M. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol. Med. Microbiol. 38, 13–22 (2003).

    Article  CAS  Google Scholar 

  69. Condrea, P., Poenaru, E., Esrig, M. & Filipesco, I. Antitetanus immunization of the newborn infant by vaccination during pregnancy. Clinical and experimental studies. Arch. Roum. Pathol. Exp. Microbiol. 20, 549–564 (1961).

    CAS  PubMed  Google Scholar 

  70. Heikkinen, J., Mottonen, M., Alanen, A. & Lassila, O. Phenotypic characterization of regulatory T cells in the human decidua. Clin. Exp. Immunol. 136, 373–378 (2004).

    Article  CAS  Google Scholar 

  71. Sasaki, Y. et al. Decidual and peripheral blood CD4+CD25+ regulatory T cells in early pregnancy subjects and spontaneous abortion cases. Mol. Hum. Reprod. 10, 347–353 (2004).

    Article  CAS  Google Scholar 

  72. Somerset, D.A., Zheng, Y., Kilby, M.D., Sansom, D.M. & Drayson, M.T. Normal human pregnancy is associated with an elevation in the immune suppressive CD25 CD4 regulatory T-cell subset. Immunology 112, 38–43 (2004).

    Article  CAS  Google Scholar 

  73. Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994).

    Article  CAS  Google Scholar 

  74. Shao, L., Jacobs, A.R., Johnson, V.V. & Mayer, L. Activation of CD8+ regulatory T cells by human placental trophoblasts. J. Immunol. 174, 7539–7547 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Gruetz, M. Kallikourdis and A. Moffett for critical reading of the manuscript, and E. Long and S. Rajagopalan for access to data in the press. Supported by the Wellcome Trust (J.T.) and the Medical Research Council (J.T. and A.G.B.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander G Betz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trowsdale, J., Betz, A. Mother's little helpers: mechanisms of maternal-fetal tolerance. Nat Immunol 7, 241–246 (2006). https://doi.org/10.1038/ni1317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1317

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing