Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thymic microenvironments for T cell differentiation and selection

Abstract

The adult thymus provides a variety of specialized microenvironments that support and direct T cell differentiation and selection. In this review, we summarize recent advances in the understanding of the function of microenvironments in shaping a diverse T cell repertoire. In particular, we focus on how thymocytes move in and out of these specialized thymic compartments in response to homing signals, differential chemokine gradients and other factors that regulate T cell migration. In addition, we discuss the diverse developmental signals provided by these microenvironments that contribute to the generation of divergent T cell lineages.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Compartmentalization of the adult thymus.
Figure 2: Positive selection–driven changes in thymocyte motility.

Similar content being viewed by others

References

  1. Gray, D.H. et al. Controlling the thymic microenvironment. Curr. Opin. Immunol. 17, 137–143 (2005).

    CAS  PubMed  Google Scholar 

  2. Blackburn, C.C. & Manley, N.R. Developing a new paradigm for thymus organogenesis. Nat. Rev. Immunol. 4, 278–289 (2004).

    CAS  PubMed  Google Scholar 

  3. Lind, E., Prockop, S., Porritt, H. & Petrie, H. Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J. Exp. Med. 194, 127–134 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Foss, D.L., Donskoy, E. & Goldschneider, I. The importation of hematogenous precursors by the thymus is a gated phenomenon in normal adult mice. J. Exp. Med. 193, 365–374 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Prockop, S.E. & Petrie, H.T. Regulation of thymus size by competition for stromal niches among early T cell progenitors. J. Immunol. 173, 1604–1611 (2004).

    CAS  PubMed  Google Scholar 

  6. Rossi, F.M. et al. Recruitment of adult thymic progenitors is regulated by P-selectin and its ligand PSGL-1. Nat. Immunol. 6, 626–634 (2005).

    CAS  PubMed  Google Scholar 

  7. Campbell, D.J., Kim, C.H. & Butcher, E.C. Chemokines in the systemic organization of immunity. Immunol. Rev. 195, 58–71 (2003).

    CAS  PubMed  Google Scholar 

  8. Petrie, H.T. Cell migration and the control of post-natal T-cell lymphopoiesis in the thymus. Nat. Rev. Immunol. 3, 859–866 (2003).

    CAS  PubMed  Google Scholar 

  9. Bleul, C.C. & Boehm, T. Chemokines define distinct microenvironments in the developing thymus. Eur. J. Immunol. 30, 3371–3379 (2000).

    CAS  PubMed  Google Scholar 

  10. Liu, C. et al. The role of CCL21 in recruitment of T-precursor cells to fetal thymi. Blood 105, 31–39 (2005).

    CAS  PubMed  Google Scholar 

  11. Zubkova, I., Mostowski, H. & Zaitseva, M. Up-regulation of IL-7, stromal-derived factor-1α, thymus-expressed chemokine, and secondary lymphoid tissue chemokine gene expression in the stromal cells in response to thymocyte depletion: implication for thymus reconstitution. J. Immunol. 175, 2321–2330 (2005).

    CAS  PubMed  Google Scholar 

  12. Cyster, J.G. Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu. Rev. Immunol. 23, 127–159 (2005).

    CAS  PubMed  Google Scholar 

  13. Matloubian, M. et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427, 355–360 (2004).

    CAS  PubMed  Google Scholar 

  14. Allende, M.L., Dreier, J.L., Mandala, S. & Proia, R.L. Expression of the sphingosine 1-phosphate receptor, S1P1, on T-cells controls thymic emigration. J. Biol. Chem. 279, 15396–15401 (2004).

    CAS  PubMed  Google Scholar 

  15. Wei, S.H. et al. Sphingosine 1-phosphate type 1 receptor agonism inhibits transendothelial migration of medullary T cells to lymphatic sinuses. Nat. Immunol. 6, 1228–1235 (2005).

    CAS  PubMed  Google Scholar 

  16. Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002).

    CAS  PubMed  Google Scholar 

  17. Schwab, S.R. et al. Lymphocyte sequestration through S1P lyase inhibition and disruption of S1P gradients. Science 309, 1735–1739 (2005).

    CAS  PubMed  Google Scholar 

  18. Feng, C. et al. A potential role for CD69 in thymocyte emigration. Int. Immunol. 14, 535–544 (2002).

    CAS  PubMed  Google Scholar 

  19. Cotta-de-Almeida, V. et al. Impaired migration of NOD mouse thymocytes: a fibronectin receptor-related defect. Eur. J. Immunol. 34, 1578–1587 (2004).

    CAS  PubMed  Google Scholar 

  20. Poznansky, M.C. et al. Thymocyte emigration is mediated by active movement away from stroma-derived factors. J. Clin. Invest. 109, 1101–1110 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ueno, T. et al. Role for CCR7 ligands in the emigration of newly generated T lymphocytes from the neonatal thymus. Immunity 16, 205–218 (2002).

    CAS  PubMed  Google Scholar 

  22. Barbee, S.D. & Alberola-Ila, J. Phosphatidylinositol 3-kinase regulates thymic exit. J. Immunol. 174, 1230–1238 (2005).

    CAS  PubMed  Google Scholar 

  23. Boehm, T., Scheu, S., Pfeffer, K. & Bleul, C.C. Thymic medullary epithelial cell differentiation, thymocyte emigration, and the control of autoimmunity require lympho-epithelial cross talk via LTβR. J. Exp. Med. 198, 757–769 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Campbell, J.J. & Butcher, E.C. Chemokines in tissue-specific and microenvironment-specific lymphocyte homing. Curr. Opin. Immunol. 12, 336–341 (2000).

    CAS  PubMed  Google Scholar 

  25. Ara, T. et al. A role of CXC chemokine ligand 12/stromal cell-derived factor-1/pre-B cell growth stimulating factor and its receptor CXCR4 in fetal and adult T cell development in vivo. J. Immunol. 170, 4649–4655 (2003).

    CAS  PubMed  Google Scholar 

  26. Plotkin, J., Prockop, S.E., Lepique, A. & Petrie, H.T. Critical role for CXCR4 signaling in progenitor localization and T cell differentiation in the postnatal thymus. J. Immunol. 171, 4521–4527 (2003).

    CAS  PubMed  Google Scholar 

  27. Misslitz, A. et al. Thymic T cell development and progenitor localization depend on CCR7. J. Exp. Med. 200, 481–491 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Benz, C., Heinzel, K. & Bleul, C.C. Homing of immature thymocytes to the subcapsular microenvironment within the thymus is not an absolute requirement for T cell development. Eur. J. Immunol. 34, 3652–3663 (2004).

    CAS  PubMed  Google Scholar 

  29. Ueno, T. et al. CCR7 signals are essential for cortex-medulla migration of developing thymocytes. J. Exp. Med. 200, 493–505 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kwan, J. & Killeen, N. CCR7 directs the migration of thymocytes into the thymic medulla. J. Immunol. 172, 3999–4007 (2004).

    CAS  PubMed  Google Scholar 

  31. Uehara, S., Grinberg, A., Farber, J.M. & Love, P.E. A role for CCR9 in T lymphocyte development and migration. J. Immunol. 168, 2811–2819 (2002).

    CAS  PubMed  Google Scholar 

  32. Wurbel, M.A. et al. Mice lacking the CCR9 CC-chemokine receptor show a mild impairment of early T- and B-cell development and a reduction in T-cell receptor γδ+ gut intraepithelial lymphocytes. Blood 98, 2626–2632 (2001).

    CAS  PubMed  Google Scholar 

  33. Bousso, P., Bhakta, N.R., Lewis, R.S. & Robey, E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science 296, 1876–1880 (2002).

    CAS  PubMed  Google Scholar 

  34. Bhakta, N.R., Oh, D.Y. & Lewis, R.S. Calcium oscillations regulate thymocyte motility during positive selection in the three-dimensional thymic environment. Nat. Immunol. 6, 143–151 (2005).

    CAS  PubMed  Google Scholar 

  35. Witt, C.M., Raychaudhuri, S., Schaefer, B., Chakraborty, A.K. & Robey, E.A. Directed migration of positively selected thymocytes visualized in real time. PLoS Biol. 3, 1062–1069 (2005).

    CAS  Google Scholar 

  36. Bousso, P. & Robey, E. Dynamic behavior of T cells and thymocytes in lymphoid organs as revealed by 2-photon microscopy. Immunity 21, 349–355 (2004).

    CAS  PubMed  Google Scholar 

  37. Kyewski, B. & Derbinski, J. Self-representation in the thymus: an extended view. Nat. Rev. Immunol. 4, 688–698 (2004).

    CAS  PubMed  Google Scholar 

  38. Ramsey, C. et al. Aire deficient mice develop multiple features of APECED phenotype and show altered immune response. Hum. Mol. Genet. 11, 397–409 (2002).

    CAS  PubMed  Google Scholar 

  39. Anderson, M.S. et al. Projection of an immunological self shadow within the thymus by the aire protein. Science 298, 1395–1401 (2002).

    CAS  PubMed  Google Scholar 

  40. Ramsey, C., Bukrinsky, A. & Peltonen, L. Systematic mutagenesis of the functional domains of AIRE reveals their role in intracellular targeting. Hum. Mol. Genet. 11, 3299–3308 (2002).

    CAS  PubMed  Google Scholar 

  41. Burkly, L. et al. Expression of relB is required for the development of thymic medulla and dendritic cells. Nature 373, 531–536 (1995).

    CAS  PubMed  Google Scholar 

  42. Kajiura, F. et al. NF-κB-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J. Immunol. 172, 2067–2075 (2004).

    CAS  PubMed  Google Scholar 

  43. Derbinski, J. & Kyewski, B. Linking signalling pathways, thymic stroma integrity and autoimmunity. Trends Immunol. 26, 503–506 (2005).

    CAS  PubMed  Google Scholar 

  44. Akiyama, T. et al. Dependence of self-tolerance on TRAF6-directed development of thymic stroma. Science 308, 248–251 (2005).

    CAS  PubMed  Google Scholar 

  45. Derbinski, J. et al. Promiscuous gene expression in thymic epithelial cells is regulated at multiple levels. J. Exp. Med. 202, 33–45 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Chin, R.K. et al. Lymphotoxin pathway directs thymic Aire expression. Nat. Immunol. 4, 1121–1127 (2003).

    CAS  PubMed  Google Scholar 

  47. Liston, A., Lesage, S., Wilson, J., Peltonen, L. & Goodnow, C.C. Aire regulates negative selection of organ-specific T cells. Nat. Immunol. 4, 350–354 (2003).

    CAS  PubMed  Google Scholar 

  48. Anderson, M.S. et al. The cellular mechanism of Aire control of T cell tolerance. Immunity 23, 227–239 (2005).

    CAS  PubMed  Google Scholar 

  49. Derbinski, J., Schulte, A., Kyewski, B. & Klein, L. Promiscuous gene expression in medullary thymic epithelial cells mirrors the peripheral self. Nat. Immunol. 2, 1032–1039 (2001).

    CAS  PubMed  Google Scholar 

  50. Gallegos, A.M. & Bevan, M.J. Central tolerance to tissue-specific antigens mediated by direct and indirect antigen presentation. J. Exp. Med. 200, 1039–1049 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dooley, J., Erickson, M. & Farr, A.G. An organized medullary epithelial structure in the normal thymus expresses molecules of respiratory epithelium and resembles the epithelial thymic rudiment of nude mice. J. Immunol. 175, 4331–4337 (2005).

    CAS  PubMed  Google Scholar 

  52. Watanabe, N. et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436, 1181–1185 (2005).

    CAS  PubMed  Google Scholar 

  53. Shortman, K., Egerton, M., Spangrude, G.J. & Scollay, R. The generation and fate of thymocytes. Semin. Immunol. 2, 3–12 (1990).

    CAS  PubMed  Google Scholar 

  54. Sakaguchi, S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat. Immunol. 6, 345–352 (2005).

    CAS  PubMed  Google Scholar 

  55. Paust, S. & Cantor, H. Regulatory T cells and autoimmune disease. Immunol. Rev. 204, 195–207 (2005).

    CAS  PubMed  Google Scholar 

  56. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    CAS  PubMed  Google Scholar 

  57. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    CAS  PubMed  Google Scholar 

  58. Fontenot, J.D. & Rudensky, A.Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6, 331–337 (2005).

    CAS  PubMed  Google Scholar 

  59. Farr, A.G., Dooley, J.L. & Erickson, M. Organization of thymic medullary epithelial heterogeneity: implications for mechanisms of epithelial differentiation. Immunol. Rev. 189, 20–27 (2002).

    CAS  PubMed  Google Scholar 

  60. Leonard, W.J. TSLP: finally in the limelight. Nat. Immunol. 3, 605–607 (2002).

    CAS  PubMed  Google Scholar 

  61. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    CAS  PubMed  Google Scholar 

  62. Bendelac, A. Positive selection of mouse NK1+ T cells by CD1-expressing cortical thymocytes. J. Exp. Med. 182, 2091–2096 (1995).

    CAS  PubMed  Google Scholar 

  63. Coles, M.C. & Raulet, D.H. NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J. Immunol. 164, 2412–2418 (2000).

    CAS  PubMed  Google Scholar 

  64. Wei, D.G. et al. Expansion and long-range differentiation of the NKT cell lineage in mice expressing CD1d exclusively on cortical thymocytes. J. Exp. Med. 202, 239–248 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Forestier, C. et al. T cell development in mice expressing CD1d directed by a classical MHC class II promoter. J. Immunol. 171, 4096–4104 (2003).

    CAS  PubMed  Google Scholar 

  66. Pasquier, B. et al. Defective NKT cell development in mice and humans lacking the adapter SAP, the X-linked lymphoproliferative syndrome gene product. J. Exp. Med. 201, 695–701 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nichols, K.E. et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat. Med. 11, 340–345 (2005).

    CAS  PubMed  Google Scholar 

  68. Chung, B., Aoukaty, A., Dutz, J., Terhorst, C. & Tan, R. Signaling lymphocytic activation molecule-associated protein controls NKT cell functions. J. Immunol. 174, 3153–3157 (2005).

    CAS  PubMed  Google Scholar 

  69. Borowski, C. & Bendelac, A. Signaling for NKT cell development: the SAP-FynT connection. J. Exp. Med. 201, 833–836 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hayes, S.M., Li, L. & Love, P.E. TCR signal strength influences αβ/γδ lineage fate. Immunity 22, 583–593 (2005).

    CAS  PubMed  Google Scholar 

  71. Haks, M.C. et al. Attenuation of γδTCR signaling efficiently diverts thymocytes to the αβ lineage. Immunity 22, 595–606 (2005).

    CAS  PubMed  Google Scholar 

  72. Robey, E. The αβ versus γδ T cell fate decision: when less is more. Immunity 22, 533–534 (2005).

    CAS  PubMed  Google Scholar 

  73. Pennington, D.J. et al. The inter-relatedness and interdependence of mouse T cell receptor γδ+ and αβ+ cells. Nat. Immunol. 4, 991–998 (2003).

    CAS  PubMed  Google Scholar 

  74. Silva-Santos, B., Pennington, D.J. & Hayday, A.C. Lymphotoxin-mediated regulation of γδ cell differentiation by αβ T cell progenitors. Science 307, 925–928 (2005).

    CAS  PubMed  Google Scholar 

  75. Ikuta, K. et al. A developmental switch in thymic lymphocyte maturation potential occurs at the level of hematopoietic stem cells. Cell 62, 863–874 (1990).

    CAS  PubMed  Google Scholar 

  76. Havran, W.L., Carbone, A. & Allison, J.P. Murine T cells with invariant γδ antigen receptors: origin, repertoire, and specificity. Semin. Immunol. 3, 89–97 (1991).

    CAS  PubMed  Google Scholar 

  77. Zerrahn, J. et al. Class I MHC molecules on hematopoietic cells can support intrathymic positive selection of T cell receptor transgenic T cells. Proc. Natl. Acad. Sci. USA 96, 11470–11475 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Choi, E.Y. et al. Thymocyte-thymocyte interaction for efficient positive selection and maturation of CD4 T cells. Immunity 23, 387–396 (2005).

    CAS  PubMed  Google Scholar 

  79. Li, W. et al. An alternate pathway for CD4 T cell development: thymocyte-expressed MHC class II selects a distinct T cell population. Immunity 23, 375–386 (2005).

    CAS  PubMed  Google Scholar 

  80. Choi, E.Y. et al. Thymocytes positively select thymocytes in human system. Hum. Immunol. 54, 15–20 (1997).

    CAS  PubMed  Google Scholar 

  81. Traggiai, E. et al. Development of a human adaptive immune system in cord blood cell-transplanted mice. Science 304, 104–107 (2004).

    CAS  PubMed  Google Scholar 

  82. Yahata, T. et al. Functional human T lymphocyte development from cord blood CD34+ cells in nonobese diabetic/Shi-scid, IL-2 receptor γ null mice. J. Immunol. 169, 204–209 (2002).

    CAS  PubMed  Google Scholar 

  83. Anderson, G. & Jenkinson, E.J. Lymphostromal interactions in thymic development and function. Nat. Rev. Immunol. 1, 31–40 (2001).

    CAS  PubMed  Google Scholar 

  84. Clegg, C.H., Rulffes, J.T., Wallace, P.M. & Haugen, H.S. Regulation of an extrathymic T-cell development pathway by oncostatin M. Nature 384, 261–263 (1996).

    CAS  PubMed  Google Scholar 

  85. Terra, R. et al. T-cell generation by lymph node resident progenitor cells. Blood 106, 193–200 (2005).

    CAS  PubMed  Google Scholar 

  86. Schmitt, T.M. & Zuniga-Pflucker, J.C. Induction of T cell development from hematopoietic progenitor cells by delta-like-1 in vitro. Immunity 17, 749–756 (2002).

    CAS  PubMed  Google Scholar 

  87. Poznansky, M.C. et al. Efficient generation of human T cells from a tissue-engineered thymic organoid. Nat. Biotechnol. 18, 729–734 (2000).

    CAS  PubMed  Google Scholar 

  88. Zuniga-Pflucker, J.C. T-cell development made simple. Nat. Rev. Immunol. 4, 67–72 (2004).

    CAS  PubMed  Google Scholar 

  89. Clark, R., Yamanaka, K., Bai, M., Dowgiert, R. & Kupper, T. Human skin cells support thymus-independent T cell development. J. Clin. Invest. 115, 3239–3249 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Robey, E.A. & Bluestone, J.A. Notch signaling in lymphocyte development and function. Curr. Opin. Immunol. 16, 360–366 (2004).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Anderson (University of California at San Francisco), P. Bousso (Pasteur Institute), H. Petrie (Scripps Florida) and C. Witt (University of Texas at San Antonio) for comments on the manuscript. Supported by the Human Frontier Science Program (T.C.) and the National Institutes of Health (AI32985 and AI053030 to E.A.R.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ellen A Robey.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Video 1

Slow, meandering migration of cortical thymocytes expressing diverse TCRs. Real-time imaging of GFP+ thymocytes in the cortex of intact thymic lobes. Green represents the fluorescent signal from GFP thymocytes and colored lines represent the position of individual cells over time. Data set (x, y, z, time) has the dimensions 164 microns × 164 microns × 40 microns × 25 minutes. Corresponds to Fig. 2a. A typical slow meandering thymocyte (black track near center), and a rare rapid directional thymocyte (black track near bottom), are highlighted. (AVI 27309 kb)

Supplementary Video 2

Rapid, directional migration of thymocytes expressing a positively selected TCR. Real-time imaging of thymocytes expressing GFP and a positively selected TCR (P14) in the cortex of intact thymic lobes. Green represents the fluorescent signal from GFP+ thymocytes and colored lines represent the position of individual cells over time. Data set (x, y, z, time) has the dimensions 164 microns × 164 microns × 40 microns × 25 minutes. Corresponds to Fig. 2b. Note the large proportion of rapid, directional thymocytes. (AVI 26643 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladi, E., Yin, X., Chtanova, T. et al. Thymic microenvironments for T cell differentiation and selection. Nat Immunol 7, 338–343 (2006). https://doi.org/10.1038/ni1323

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1323

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing