Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages

Abstract

Gram-negative bacteria that replicate in the cytosol of mammalian macrophages can activate a signaling pathway leading to caspase-1 cleavage and secretion of interleukin 1β, a powerful host response factor. Ipaf, a cytosolic pattern-recognition receptor in the family of nucleotide-binding oligomerization domain–leucine-rich repeat proteins, is critical in such a response to salmonella infection, but the mechanism of how Ipaf is activated by the bacterium remains poorly understood. Here we demonstrate that salmonella strains either lacking flagellin or expressing mutant flagellin were deficient in activation of caspase-1 and in interleukin 1β secretion, although transcription factor NF-κB–dependent production of interleukin 6 or the chemokine MCP-1 was unimpaired. Delivery of flagellin to the macrophage cytosol induced Ipaf-dependent activation of caspase-1 that was independent of Toll-like receptor 5, required for recognition of extracellular flagellin. In macrophages made tolerant by previous exposure to lipopolysaccharide, which abrogates activation of NF-κB and mitogen-activated protein kinases, salmonella infection still activated caspase-1. Thus, detection of flagellin through Ipaf induces caspase-1 activation independently of Toll-like receptor 5 in salmonella-infected and lipopolysaccharide-tolerized macrophages.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Exposure of bacterial components in the host cytosol is necessary and sufficient for secretion of IL-1β in macrophages.
Figure 2: Flagellin is required for IL-1β, but not IL-6 or MCP-1 secretion, in salmonella-infected macrophages.
Figure 3: Activation of caspase-1 in response to salmonella requires flagellin and Ipaf but is independent of TLR5.
Figure 4: The main salmonella flagellin gene required for IL-1β secretion, caspase-1 activation and early cell death in macrophages is fliC.
Figure 5: Delivery of flagellin to the cytosol is sufficient for caspase-1 activation in wild-type but not Ipaf-deficient macrophages.
Figure 6: Salmonella induces caspase-1 activation in the absence of activation of NF-κB, Erk and p38.
Figure 7: Salmonella potently induces IL-1β secretion that is dependent on flagellin and Ipaf in macrophages insensitive to TLR stimulation.

Similar content being viewed by others

References

  1. Dinarello, C.A. Biologic basis for interleukin-1 in disease. Blood 87, 2095–2147 (1996).

    CAS  Google Scholar 

  2. Thornberry, N.A. et al. A novel heterodimeric cysteine protease is required for interleukin-1β processing in monocytes. Nature 356, 768–774 (1992).

    Article  CAS  Google Scholar 

  3. Schmitz, J. et al. IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23, 479–490 (2005).

    Article  CAS  Google Scholar 

  4. Martinon, F., Burns, K. & Tschopp, J. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-β. Mol. Cell 10, 417–426 (2002).

    Article  CAS  Google Scholar 

  5. Inohara, N., Chamaillard, M., McDonald, C. & Nunez, G. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355–383 (2005).

    Article  CAS  Google Scholar 

  6. Ting, J.P. & Davis, B.K. CATERPILLER: a novel gene family important in immunity, cell death, and diseases. Annu. Rev. Immunol. 23, 387–414 (2005).

    Article  CAS  Google Scholar 

  7. Martinon, F. & Tschopp, J. Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117, 561–574 (2004).

    Article  CAS  Google Scholar 

  8. Poyet, J.L. et al. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J. Biol. Chem. 276, 28309–28313 (2001).

    Article  CAS  Google Scholar 

  9. Agostini, L. et al. NALP3 forms an IL-1β-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20, 319–325 (2004).

    Article  CAS  Google Scholar 

  10. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004).

    Article  CAS  Google Scholar 

  11. Mariathasan, S., Weiss, D.S., Dixit, V.M. & Monack, D.M. Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J. Exp. Med. 202, 1043–1049 (2005).

    Article  CAS  Google Scholar 

  12. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature (2006).

  13. Ozoren, N. et al. Distinct roles of TLR2 and the adaptor ASC in IL-1β/IL-18 secretion in response to Listeria monocytogenes. J. Immunol. 176, 4337–4342 (2006).

    Article  Google Scholar 

  14. Kanneganti, T.D. et al. Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440, 233–236 (2006).

    Article  CAS  Google Scholar 

  15. Sato, S. et al. A variety of microbial components induce tolerance to lipopolysaccharide by differentially affecting MyD88-dependent and -independent pathways. Int. Immunol. 14, 783–791 (2002).

    Article  CAS  Google Scholar 

  16. Masumoto, J. et al. ASC is an activating adaptor for NF-κB and caspase-8-dependent apoptosis. Biochem. Biophys. Res. Commun. 303, 69–73 (2003).

    Article  CAS  Google Scholar 

  17. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc. Natl. Acad. Sci. USA 96, 2396–2401 (1999).

    Article  CAS  Google Scholar 

  18. Galan, J.E. & Collmer, A. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284, 1322–1328 (1999).

    Article  CAS  Google Scholar 

  19. Portnoy, D.A., Auerbuch, V. & Glomski, I.J. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J. Cell Biol. 158, 409–414 (2002).

    Article  CAS  Google Scholar 

  20. McCaffrey, R.L. et al. A specific gene expression program triggered by Gram-positive bacteria in the cytosol. Proc. Natl. Acad. Sci. USA 101, 11386–11391 (2004).

    Article  CAS  Google Scholar 

  21. O'Riordan, M., Yi, C.H., Gonzales, R., Lee, K.D. & Portnoy, D.A. Innate recognition of bacteria by a macrophage cytosolic surveillance pathway. Proc. Natl. Acad. Sci. USA 99, 13861–13866 (2002).

    Article  CAS  Google Scholar 

  22. Komoriya, K. et al. Flagellar proteins and type III-exported virulence factors are the predominant proteins secreted into the culture media of Salmonella typhimurium. Mol. Microbiol. 34, 767–779 (1999).

    Article  CAS  Google Scholar 

  23. Chilcott, G.S. & Hughes, K.T. Coupling of flagellar gene expression to flagellar assembly in Salmonella enterica serovar typhimurium and Escherichia coli. Microbiol. Mol. Biol. Rev. 64, 694–708 (2000).

    Article  CAS  Google Scholar 

  24. Macnab, R.M. How bacteria assemble flagella. Annu. Rev. Microbiol. 57, 77–100 (2003).

    Article  CAS  Google Scholar 

  25. Hayashi, F. et al. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099–1103 (2001).

    Article  CAS  Google Scholar 

  26. Smith, K.D. et al. Toll-like receptor 5 recognizes a conserved site on flagellin required for protofilament formation and bacterial motility. Nat. Immunol. 4, 1247–1253 (2003).

    Article  CAS  Google Scholar 

  27. Simberg, D., Weisman, S., Talmon, Y. & Barenholz, Y. DOTAP (and other cationic lipids): chemistry, biophysics, and transfection. Crit. Rev. Ther. Drug Carrier Syst. 21, 257–317 (2004).

    Article  CAS  Google Scholar 

  28. Burns, K., Martinon, F. & Tschopp, J. New insights into the mechanism of IL-1β maturation. Curr. Opin. Immunol. 15, 26–30 (2003).

    Article  CAS  Google Scholar 

  29. Dobrovolskaia, M.A. & Vogel, S.N. Toll receptors, CD14, and macrophage activation and deactivation by LPS. Microbes Infect. 4, 903–914 (2002).

    Article  CAS  Google Scholar 

  30. Hagberg, L. et al. Difference in susceptibility to gram-negative urinary tract infection between C3H/HeJ and C3H/HeN mice. Infect. Immun. 46, 839–844 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Cross, A. et al. The importance of a lipopolysaccharide-initiated, cytokine-mediated host defense mechanism in mice against extraintestinally invasive Escherichia coli. J. Clin. Invest. 96, 676–686 (1995).

    Article  CAS  Google Scholar 

  32. Stetson, D.B. & Medzhitov, R. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24, 93–103 (2006).

    Article  CAS  Google Scholar 

  33. Ishii, K.J. et al. A Toll-like receptor–independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7, 40–48 (2006).

    Article  CAS  Google Scholar 

  34. Perrin, A.J., Jiang, X., Birmingham, C.L., So, N.S. & Brumell, J.H. Recognition of bacteria in the cytosol of Mammalian cells by the ubiquitin system. Curr. Biol. 14, 806–811 (2004).

    Article  CAS  Google Scholar 

  35. Viala, J. et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat. Immunol. 5, 1166–1174 (2004).

    Article  CAS  Google Scholar 

  36. Mackey, D., Belkhadir, Y., Alonso, J.M., Ecker, J.R. & Dangl, J.L. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112, 379–389 (2003).

    Article  CAS  Google Scholar 

  37. Mackey, D., Holt, B.F., III, Wiig, A. & Dangl, J.L. RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108, 743–754 (2002).

    Article  CAS  Google Scholar 

  38. Cook, D.N., Pisetsky, D.S. & Schwartz, D.A. Toll-like receptors in the pathogenesis of human disease. Nat. Immunol. 5, 975–979 (2004).

    Article  CAS  Google Scholar 

  39. Danner, R.L. et al. Endotoxemia in human septic shock. Chest 99, 169–175 (1991).

    Article  CAS  Google Scholar 

  40. Liew, F.Y., Xu, D., Brint, E.K. & O'Neill, L.A. Negative regulation of toll-like receptor-mediated immune responses. Nat. Rev. Immunol. 5, 446–458 (2005).

    Article  CAS  Google Scholar 

  41. West, M.A. & Heagy, W. Endotoxin tolerance: A review. Crit. Care Med. 30, S64–S73 (2002).

    Article  CAS  Google Scholar 

  42. Dinarello, C.A. Blocking IL-1 in systemic inflammation. J. Exp. Med. 201, 1355–1359 (2005).

    Article  CAS  Google Scholar 

  43. Randow, F. et al. Mechanism of endotoxin desensitization: involvement of interleukin 10 and transforming growth factor β. J. Exp. Med. 181, 1887–1892 (1995).

    Article  CAS  Google Scholar 

  44. Higgins, D.E., Shastri, N. & Portnoy, D.A. Delivery of protein to the cytosol of macrophages using Escherichia coli K-12. Mol. Microbiol. 31, 1631–1641 (1999).

    Article  CAS  Google Scholar 

  45. Celada, A., Gray, P.W., Rinderknecht, E. & Schreiber, R.D. Evidence for a gamma-interferon receptor that regulates macrophage tumoricidal activity. J. Exp. Med. 160, 55–74 (1984).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. McDonald for critical review of the manuscript. Supported by the National Institutes of Health (R01 AI064748 and R01 AI063331; and 5/T32/HL007517 to T.-D.K.), Fondazione Italiana Ricerca sul Cancro (L.F.) and Fondation pour la Recherche Medicale (M.B.-M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriel Núñez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Infection of macrophages with wild-type and mutant salmonella. (PDF 732 kb)

Supplementary Fig. 2

Generation of Ipaf KO mice. (PDF 1125 kb)

Supplementary Fig. 3

Detection of IL-1β (p17 subunit) in culture supernatants after infection with salmonella. (PDF 749 kb)

Supplementary Methods (PDF 41 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franchi, L., Amer, A., Body-Malapel, M. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nat Immunol 7, 576–582 (2006). https://doi.org/10.1038/ni1346

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1346

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing