Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Negative regulation of interferon-regulatory factor 3–dependent innate antiviral response by the prolyl isomerase Pin1

Abstract

Recognition of double-stranded RNA activates interferon-regulatory factor 3 (IRF3)–dependent expression of antiviral factors. Although the molecular mechanisms underlying the activation of IRF3 have been studied, the mechanisms by which IRF3 activity is reduced have not. Here we report that activation of IRF3 is negatively regulated by the peptidyl-prolyl isomerase Pin1. After stimulation by double-stranded RNA, induced phosphorylation of the Ser339–Pro340 motif of IRF3 led to its interaction with Pin1 and finally polyubiquitination and then proteasome-dependent degradation of IRF3. Suppression of Pin1 by RNA interference or genetic deletion resulted in enhanced IRF-3-dependent production of interferon-β, with consequent reduction of virus replication. These results elucidate a previously unknown mechanism for controlling innate antiviral responses by negatively regulating IRF3 activity via Pin1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pin1 suppresses IRF3-dependent transcriptional activation.
Figure 2: Pin1 interacts with IRF3 through its phosphorylated Ser339–Pro340 motif.
Figure 3: Pin1 regulates the stability of IRF3.
Figure 4: Endogenous Pin1 negatively regulates TLR3-mediated IRF3-dependent transcriptional activation and IFN-β production.
Figure 5: Pin1 deficiency enhances IFN-β production in response to dsRNA.
Figure 6: Pin1 regulates RIG-I-mediated IRF3 signaling and innate antiviral response.

Similar content being viewed by others

References

  1. Taniguchi, T., Ogasawara, K., Takaoka, A. & Tanaka, N. IRF family of transcription factors as regulators of host defense. Annu. Rev. Immunol. 19, 623–655 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  2. Hiscott, J. et al. Convergence of the NF-κB and interferon signaling pathways in the regulation of antiviral defense and apoptosis. Ann. NY Acad. Sci. 1010, 237–248 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  3. Takeda, K. & Akira, S. Toll-like receptors in innate immunity. Int. Immunol. 17, 1–14 (2005).

    Article  CAS  Google Scholar 

  4. Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413, 732–738 (2001).

    Article  CAS  Google Scholar 

  5. Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    Article  CAS  Google Scholar 

  6. Poltorak, A. et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 282, 2085–2088 (1998).

    CAS  Google Scholar 

  7. Doyle, S. et al. IRF3 mediates a TLR3/TLR4-specific antiviral gene program. Immunity 17, 251–263 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  8. Yoneyama, M. et al. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF3 and CBP/p300. EMBO J. 17, 1087–1095 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  9. Mori, M. et al. Identification of Ser-386 of interferon regulatory factor 3 as critical target for inducible phosphorylation that determines activation. J. Biol. Chem. 279, 9698–9702 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  10. Lin, R., Heylbroeck, C., Pitha, P.M. & Hiscott, J. Virus-dependent phosphorylation of the IRF3 transcription factor regulates nuclear translocation, transactivation potential, and proteasome-mediated degradation. Mol. Cell. Biol. 18, 2986–2996 (1998).

    Article  CAS  PubMed Central  Google Scholar 

  11. Lin, R., Mamane, Y. & Hiscott, J. Structural and functional analysis of interferon regulatory factor 3: localization of the transactivation and autoinhibitory domains. Mol. Cell. Biol. 19, 2465–2474 (1999).

    Article  CAS  PubMed Central  Google Scholar 

  12. Servant, M.J. et al. Identification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J. Biol. Chem. 276, 355–363 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  13. Karpova, A.Y., Trost, M., Murray, J.M., Cantley, L.C. & Howley, P.M. Interferon regulatory factor-3 is an in vivo target of DNA-PK. Proc. Natl. Acad. Sci. USA 99, 2818–2823 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  14. Fitzgerald, K.A. et al. IKKε and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4, 491–496 (2003).

    Article  CAS  Google Scholar 

  15. Sharma, S. et al. Triggering the interferon antiviral response through an IKK-related pathway. Science 300, 1148–1151 (2003).

    Article  CAS  Google Scholar 

  16. McWhirter, S.M. et al. IFN-regulatory factor 3-dependent gene expression is defective in Tbk1-deficient mouse embryonic fibroblasts. Proc. Natl. Acad. Sci. USA 101, 233–238 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  17. Hemmi, H. et al. The roles of two IκB kinase-related kinases in lipopolysaccharide and double stranded RNA signaling and viral infection. J. Exp. Med. 199, 1641–1650 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  18. Wulf, G., Finn, G., Suizu, F. & Lu, K.P. Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nat. Cell Biol. 7, 435–441 (2005).

    Article  CAS  Google Scholar 

  19. Lu, K.P., Hanes, S.D. & Hunter, T. A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380, 544–547 (1996).

    Article  CAS  Google Scholar 

  20. Ryo, A. et al. Pin1 regulates turnover and subcellular localization of β-catenin by inhibiting its interaction with APC. Nat. Cell Biol. 3, 793–801 (2001).

    Article  CAS  PubMed Central  Google Scholar 

  21. Wulf, G.M., Liou, Y.C., Ryo, A., Lee, S.W. & Lu, K.P. Role of Pin1 in the regulation of p53 stability and p21 transactivation, and cell cycle checkpoints in response to DNA damage. J. Biol. Chem. 277, 47976–47979 (2002).

    Article  CAS  Google Scholar 

  22. Zacchi, P. et al. The prolyl isomerase Pin1 reveals a mechanism to control p53 functions after genotoxic insults. Nature 419, 853–857 (2002).

    Article  CAS  Google Scholar 

  23. Zheng, H. et al. The prolyl isomerase Pin1 is a regulator of p53 in genotoxic response. Nature 419, 849–853 (2002).

    Article  CAS  Google Scholar 

  24. Ryo, A. et al. PIN1 is an E2F target gene essential for Neu/Ras-induced transformation of mammary epithelial cells. Mol. Cell. Biol. 22, 5281–5295 (2002).

    Article  CAS  PubMed Central  Google Scholar 

  25. Liou, Y.C. et al. Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424, 556–561 (2003).

    Article  CAS  Google Scholar 

  26. Ryo, A. et al. Regulation of NF-κB signaling by Pin1-dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA. Mol. Cell 12, 1413–1426 (2003).

    Article  CAS  Google Scholar 

  27. Mantovani, F. et al. Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol. Cell 14, 625–636 (2004).

    Article  CAS  Google Scholar 

  28. Yeh, E. et al. A signalling pathway controlling c-Myc degradation that impacts oncogenic transformation of human cells. Nat. Cell Biol. 6, 308–318 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  29. Yamamoto, M. et al. Cutting edge: a novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the Toll-like receptor signaling. J. Immunol. 169, 6668–6672 (2002).

    Article  CAS  Google Scholar 

  30. Saitoh, T. et al. A20 is a negative regulator of IFN regulatory factor 3 signaling. J. Immunol. 174, 1507–1512 (2005).

    Article  CAS  PubMed Central  Google Scholar 

  31. Sato, M. et al. Distinct and essential roles of transcription factors IRF3 and IRF-7 in response to viruses for IFN-α/β gene induction. Immunity 13, 539–548 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  32. Lipford, J.R. & Deshaies, R.J. Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat. Cell Biol. 5, 845–850 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  33. Bao, L. et al. Prevalent overexpression of prolyl isomerase Pin1 in human cancers. Am. J. Pathol. 164, 1727–1737 (2004).

    Article  CAS  PubMed Central  Google Scholar 

  34. Stojdl, D.F. et al. VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4, 263–275 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  35. Sakaguchi, S. et al. Essential role of IRF3 in lipopolysaccharide-induced interferon-β gene expression and endotoxin shock. Biochem. Biophys. Res. Commun. 306, 860–866 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  36. Hsu, L.C. et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 428, 341–345 (2004).

    Article  CAS  Google Scholar 

  37. Heylbroeck, C. et al. The IRF3 transcription factor mediates Sendai virus-induced apoptosis. J. Virol. 74, 3781–3792 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  38. Honda, K. et al. IRF-7 is the master regulator of type-I interferon-dependent immune responses. Nature 434, 772–777 (2005).

    Article  CAS  Google Scholar 

  39. Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  40. Saitoh, T. et al. TWEAK induces NF-κB2 p100 processing and long lasting NF-κB activation. J. Biol. Chem. 278, 36005–36012 (2003).

    Article  CAS  PubMed Central  Google Scholar 

  41. Momoi, Y. et al. Pertussis toxin enhances human immunodeficiency virus type 1 replication. AIDS Res. Hum. Retroviruses 16, 373–379 (2000).

    Article  CAS  PubMed Central  Google Scholar 

  42. Morita, S., Kojima, T. & Kitamura, T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 7, 1063–1066 (2000).

    Article  CAS  Google Scholar 

  43. Fujimori, F., Takahashi, K., Uchida, C. & Uchida, T. Mice lacking Pin1 develop normally, but are defective in entering cell cycle from G0 arrest. Biochem. Biophys. Res. Commun. 265, 658–663 (1999).

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K. Swanson for technical advice. Supported by the Ministry of Education, Culture, Sports, Science and Technology of Japan (13226027 and 14406009 to N.Y.; 16659125 and 17013029 to S.Y.), the National Institutes of Health (GM58556 to K.P.L.), the Japan Society for the Promotion of Science (T.S.), the Swiss Foundation for Grants in Biology and Medicine (A.T.-K.) and the Leukemia and Lymphoma Society (A.R.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Akihide Ryo or Shoji Yamaoka.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Rapid and transient phosphorylation of IRF3 at Ser396 versus delayed phosphorylation of IRF3 at Ser339 in response to TLR3 or TLR4 stimulation. (PDF 142 kb)

Supplementary Fig. 2

TBK1 and IKK-i are involved in phosphorylation of IRF3 at Ser339. (PDF 113 kb)

Supplementary Fig. 3

Pin1 does not significantly affect NF-κB activation induced by dsRNA stimulation or virus infection. (PDF 156 kb)

Supplementary Fig. 4

Specific inhibition of Pin1 expression augments IRF3-dependent transcriptional activation. (PDF 175 kb)

Supplementary Fig. 5

Forced expression of Pin1 or dominant negative IRF3 antagonizes the polyIC-induced antiviral activity. (PDF 1020 kb)

Supplementary Fig. 6

Pin1 expression levels following stimulation or virus infection. (PDF 133 kb)

Supplementary Methods (PDF 106 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saitoh, T., Tun-Kyi, A., Ryo, A. et al. Negative regulation of interferon-regulatory factor 3–dependent innate antiviral response by the prolyl isomerase Pin1. Nat Immunol 7, 598–605 (2006). https://doi.org/10.1038/ni1347

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1347

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing