Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regulation of naive T cell function by the NF-κB2 pathway

A Corrigendum to this article was published on 01 November 2007

This article has been updated

Abstract

T cell activation involves the orchestration of several signaling pathways, including that of the 'classical' transcription factor NF-κB components NF-κB1–RelA. The function of the 'nonclassical' NF-κB2–RelB pathway is less clear, although T cells lacking components of this pathway have activation defects. Here we show that mice deficient in NF-κB-inducing kinase have a complex phenotype consisting of immunosuppression mediated by CD25Foxp3 memory CD4+ cells and, in the absence of those cells, hyper-responsive naive CD4+ T cells, which caused autoimmune lesions after adoptive transfer into hosts deficient in recombination-activating genes. Biochemical studies indicated involvement of a cell-intrinsic mechanism in which NF-κB2 (p100) limits nuclear translocation of NF-κB1–RelA and thereby functions as a regulatory 'brake' for the activation of naive T cells.

NOTE: In the version of this article initially published, the sentence on page 763, column 2, line 12 is incorrect. The correct sentence should end “…and these mice show increased susceptibility to typhlocolitis and infection with Leishmania major but are resistant to experimental autoimmune encephalomyelitis and asthma14–17.” The error has been corrected in the PDF version of the article.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NF-κB activation in CD4+ T cells.
Figure 2: T cell responses of mice deficient in NF-κB2–RelB.
Figure 3: IL-2 secretion and IL-2R synthesis by aly/aly CD4+ subsets.
Figure 4: Proliferative responses of naive and memory aly/aly CD4+ subsets in vivo.
Figure 5: Molecular interactions between NF-κB subunits during T cell activation.
Figure 6: Kinetics of NF-κB1 and NF-κB2 expression in naive CD4+ cells after TCR ligation.
Figure 7: Induction of autoimmune disease by subsets of aly/+ and aly/aly CD4+ cells.

Similar content being viewed by others

Change history

  • 19 October 2007

    In the version of this article initially published, the legends for Figures 1 and 5 are incorrect. The correct phrasing should be, for Figure 1a, “... injection of α-DEC-MCC, α-DEC-APL constructs, α-DEC-ovalbumin (α-DEC-OVA), α-DEC-205 plus isotype-MCC (α-DEC + iso-MCC) or PBS...”; for Figure 1b,c, “...injection of α-DEC-MCC, α-DEC-APL constructs, α-DEC-ovalbumin, α-DEC-205 plus isotype-MCC or PBS...”; and for Figure 5, “...mice were injected with α-DEC-APL constructs and then, 5 h later, with Fluo-4 AM– and CMRA-colabeled AND T cells” on line 2, and ‘Frequency of AND T cells with ‘sustained’ Ca2+ increase in mice treated...” on line 3. The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Ghosh, S., May, M.J. & Kopp, E.B. NF-κB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu. Rev. Immunol. 16, 225–260 (1998).

    Article  CAS  Google Scholar 

  2. Karin, M. How NF-κB is activated: the role of the IκB kinase (IKK) complex. Oncogene 18, 6867–6874 (1999).

    Article  CAS  Google Scholar 

  3. Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280–288 (2004).

    Article  CAS  Google Scholar 

  4. Kahn-Perles, B., Lipcey, C., Lecine, P., Olive, D. & Imbert, J. Temporal and subunit-specific modulations of the Rel/NF-κB transcription factors through CD28 costimulation. J. Biol. Chem. 272, 21774–21783 (1997).

    Article  CAS  Google Scholar 

  5. Sun, Z. et al. PKC-theta is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    Article  CAS  Google Scholar 

  6. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    Article  CAS  Google Scholar 

  7. Thome, M. & Tschopp, J. TCR-induced NF-κB activation: a crucial role for Carma1, Bcl10 and MALT1. Trends Immunol. 24, 419–424 (2003).

    Article  CAS  Google Scholar 

  8. Karin, M. & Ben-Neriah, Y. Phosphorylation meets ubiquitination: the control of NF-κB activity. Annu. Rev. Immunol. 18, 621–663 (2000).

    Article  CAS  Google Scholar 

  9. Pimentel-Muinos, F. et al. Regulation of interleukin-2α chain expression and nuclear factor κB activation by protein kinase C in T lymphocytes. Autocrine role of tumor necrosis factor α. J. Biol. Chem. 269, 24424–24429 (1994).

    CAS  PubMed  Google Scholar 

  10. Prasad, A.S. et al. Zinc enhances the expression of interleukin-2 and interleukin-2 receptors in HUT-78 cells by way of NF-κB activation. J. Lab. Clin. Med. 140, 272–289 (2002).

    Article  CAS  Google Scholar 

  11. Dejardin, E. et al. The lymphotoxin-β receptor induces different patterns of gene expression via two NF-κB pathways. Immunity 17, 525–535 (2002).

    Article  CAS  Google Scholar 

  12. Matsushima, A. et al. Essential role of nuclear factor (NF)-κB-inducing kinase and inhibitor of κB (IκB) kinase α in NF-κB activation through lymphotoxin β receptor, but not through tumor necrosis factor receptor I. J. Exp. Med. 193, 631–636 (2001).

    Article  CAS  Google Scholar 

  13. Matsumoto, M. et al. Essential role of NF-κB-inducing kinase in T cell activation through the TCR/CD3 pathway. J. Immunol. 169, 1151–1158 (2002).

    Article  CAS  Google Scholar 

  14. Artis, D. et al. NF-κB1 is required for optimal CD4+ Th1 cell development and resistance to Leishmania major. J. Immunol. 170, 1995–2003 (2003).

    Article  CAS  Google Scholar 

  15. Erdman, S., Fox, J.G., Dangler, C.A., Feldman, D. & Horwitz, B.H. Typhlocolitis in NF-κB-deficient mice. J. Immunol. 166, 1443–1447 (2001).

    Article  CAS  Google Scholar 

  16. Hilliard, B., Samoilova, E.B., Liu, T.S., Rostami, A. & Chen, Y. Experimental autoimmune encephalomyelitis in NF-κB-deficient mice:roles of NF-κB in the activation and differentiation of autoreactive T cells. J. Immunol. 163, 2937–2943 (1999).

    CAS  PubMed  Google Scholar 

  17. Das, J. et al. A critical role for NF-κB in GATA3 expression and TH2 differentiation in allergic airway inflammation. Nat. Immunol. 2, 45–50 (2001).

    Article  CAS  Google Scholar 

  18. Beg, A.A., Sha, W.C., Bronson, R.T., Ghosh, S. & Baltimore, D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-κB. Nature 376, 167–170 (1995).

    Article  CAS  Google Scholar 

  19. Burkly, L. et al. Expression of RelB is required for the development of thymic medulla and dendritic cells. Nature 373, 531–536 (1995).

    Article  CAS  Google Scholar 

  20. Weih, F. et al. Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the NF-κB/Rel family. Cell 80, 331–340 (1995).

    Article  CAS  Google Scholar 

  21. Franzoso, G. et al. Mice deficient in nuclear factor (NF)-κB/p52 present with defects in humoral responses, germinal center reactions, and splenic microarchitecture. J. Exp. Med. 187, 147–159 (1998).

    Article  CAS  Google Scholar 

  22. Speirs, K., Lieberman, L., Caamano, J., Hunter, C.A. & Scott, P. Cutting edge: NF-κB2 is a negative regulator of dendritic cell function. J. Immunol. 172, 752–756 (2004).

    Article  CAS  Google Scholar 

  23. Hilliard, B.A. et al. Critical roles of c-Rel in autoimmune inflammation and helper T cell differentiation. J. Clin. Invest. 110, 843–850 (2002).

    Article  CAS  Google Scholar 

  24. Kontgen, F. et al. Mice lacking the c-rel proto-oncogene exhibit defects in lymphocyte proliferation, humoral immunity, and interleukin-2 expression. Genes Dev. 9, 1965–1977 (1995).

    Article  CAS  Google Scholar 

  25. Shinkura, R. et al. Alymphoplasia is caused by a point mutation in the mouse gene encoding Nf-κB-inducing kinase. Nat. Genet. 22, 74–77 (1999).

    Article  CAS  Google Scholar 

  26. Novack, D.V. et al. The IκB function of NF-κB2 p100 controls stimulated osteoclastogenesis. J. Exp. Med. 198, 771–781 (2003).

    Article  CAS  Google Scholar 

  27. Yin, L. et al. Defective lymphotoxin-β receptor-induced NF-κB transcriptional activity in NIK-deficient mice. Science 291, 2162–2165 (2001).

    Article  CAS  Google Scholar 

  28. Fagarasan, S. et al. Alymphoplasia (aly)-type nuclear factor κB-inducing kinase (NIK) causes defects in secondary lymphoid tissue chemokine receptor signaling and homing of peritoneal cells to the gut-associated lymphatic tissue system. J. Exp. Med. 191, 1477–1486 (2000).

    Article  CAS  Google Scholar 

  29. Yamada, T. et al. Abnormal immune function of hemopoietic cells from alymphoplasia (aly) mice, a natural strain with mutant NF-κB-inducing kinase. J. Immunol. 165, 804–812 (2000).

    Article  CAS  Google Scholar 

  30. Kajiura, F. et al. NF-κB-inducing kinase establishes self-tolerance in a thymic stroma-dependent manner. J. Immunol. 172, 2067–2075 (2004).

    Article  CAS  Google Scholar 

  31. Weih, F. et al. Both multiorgan inflammation and myeloid hyperplasia in RelB-deficient mice are T cell dependent. J. Immunol. 157, 3974–3979 (1996).

    CAS  PubMed  Google Scholar 

  32. Tsubata, R. et al. Autoimmune disease of exocrine organs in immunodeficient alymphoplasia mice: a spontaneous model for Sjogren's syndrome. Eur. J. Immunol. 26, 2742–2748 (1996).

    Article  CAS  Google Scholar 

  33. Dutton, R.W., Bradley, L.M. & Swain, S.L. T cell memory. Annu. Rev. Immunol. 16, 201–223 (1998).

    Article  CAS  Google Scholar 

  34. Sprent, J. & Surh, C.D. T cell memory. Annu. Rev. Immunol. 20, 551–579 (2002).

    Article  CAS  Google Scholar 

  35. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  Google Scholar 

  36. Fehervari, Z. & Sakaguchi, S. Development and function of CD25+CD4+ regulatory T cells. Curr. Opin. Immunol. 16, 203–208 (2004).

    Article  CAS  Google Scholar 

  37. Piccirillo, C.A. & Shevach, E.M. Naturally-occurring CD4+CD25+ immunoregulatory T cells: central players in the arena of peripheral tolerance. Semin. Immunol. 16, 81–88 (2004).

    Article  CAS  Google Scholar 

  38. Khattri, R., Cox, T., Yasayko, S.A. & Ramsdell, F. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat. Immunol. 4, 337–342 (2003).

    Article  CAS  Google Scholar 

  39. Fontenot, J.D., Gavin, M.A. & Rudensky, A.Y. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat. Immunol. 4, 330–336 (2003).

    Article  CAS  Google Scholar 

  40. Hori, S., Nomura, T. & Sakaguchi, S. Control of regulatory T cell development by the transcription factor Foxp3. Science 299, 1057–1061 (2003).

    Article  CAS  Google Scholar 

  41. Lu, L.F., Gondek, D.C., Scott, Z.A. & Noelle, R.J. NF κB-inducing kinase deficiency results in the development of a subset of regulatory T cells, which shows a hyperproliferative activity upon glucocorticoid-induced TNF receptor family-related gene stimulation. J. Immunol. 175, 1651–1657 (2005).

    Article  CAS  Google Scholar 

  42. Ernst, B., Lee, D-S., Chang, J., Sprent, J. & Surh, C.D. The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173–181 (1999).

    Article  CAS  Google Scholar 

  43. Weil, R. & Israel, A. T-cell-receptor- and B-cell-receptor-mediated activation of NF-κB in lymphocytes. Curr. Opin. Immunol. 16, 374–381 (2004).

    Article  CAS  Google Scholar 

  44. Kim, H.P. & Leonard, W.J. The basis for TCR-mediated regulation of the IL-2 receptor α chain gene: role of widely separated regulatory elements. EMBO J. 21, 3051–3059 (2002).

    Article  CAS  Google Scholar 

  45. Schuh, K. et al. The interleukin 2 receptor α chain/CD25 promoter is a target for nuclear factor of activated T cells. J. Exp. Med. 188, 1369–1373 (1998).

    Article  CAS  Google Scholar 

  46. Bren, G.D. et al. Transcription of the RelB gene is regulated by NF-κB. Oncogene 20, 7722–7733 (2001).

    Article  CAS  Google Scholar 

  47. Olashaw, N.E. Inducible activation of RelB in fibroblasts. J. Biol. Chem. 271, 30307–30310 (1996).

    CAS  PubMed  Google Scholar 

  48. Ivanov, V.N., Deng, G., Podack, E.R. & Malek, T.R. Pleiotropic effects of Bcl-2 on transcription factors in T cells: potential role of NF-κB p50-p50 for the anti-apoptotic function of Bcl-2. Int. Immunol. 7, 1709–1720 (1995).

    Article  CAS  Google Scholar 

  49. Robertson, J.M., Jensen, P.E. & Evavold, B.D. DO11.10 and OT-II T cells recognize a C-terminal ovalbumin 323–339 epitope. J. Immunol. 164, 4706–4712 (2000).

    Article  CAS  Google Scholar 

  50. Kishimoto, H. & Sprent, J. Strong TCR ligation without costimulation causes rapid onset of Fas-dependent apoptosis of naive murine CD4+ T cells. J. Immunol. 163, 1817–1826 (1999).

    CAS  PubMed  Google Scholar 

  51. Assenmacher, M., Schmitz, J. & Radbruch, A. Flow cytometric determination of cytokines in activated murine T helper lymphocytes: expression of interleukin-10 in interferon-γ and in interleukin-4-expressing cells. Eur. J. Immunol. 24, 1097–1101 (1994).

    Article  CAS  Google Scholar 

  52. Grundstrom, S., Anderson, P., Scheipers, P. & Sundstedt, A. Bcl-3 and NFκB p50-p50 homodimers act as transcriptional repressors in tolerant CD4+ T cells. J. Biol. Chem. 279, 8460–8468 (2004).

    Article  Google Scholar 

  53. Zal, T. & Gascoigne, N.R. Using live FRET imaging to reveal early protein-protein interactions during T cell activation. Curr. Opin. Immunol. 16, 418–427 (2004).

    Article  CAS  Google Scholar 

  54. Ishimaru, N. et al. Development of autoimmune exocrinopathy resembling Sjogren's syndrome in estrogen-deficient mice of healthy background. Am. J. Pathol. 163, 1481–1490 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B. Marchand for typing the manuscript. Supported by the United States Public Health Service (CA38355, AI21487, AI46710 and AG01743; publication number 17327-IMM from The Scripps Research Institute) and by the Ministry of Education, Science, and Culture of Japan (grants-in-aid for scientific research; 17689049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Sprent.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Proliferation of T cell subsets. (PDF 428 kb)

Supplementary Fig. 2

Suppressive effect of aly/aly memory CD4+ T cells. (PDF 214 kb)

Supplementary Fig. 3

Expression of Foxp3 in CD4+ cell subsets. (PDF 92 kb)

Supplementary Fig. 4

Comparison of memory CD4+ and CD25+CD4+ cells. (PDF 183 kb)

Supplementary Fig. 5

NF-κB1/NF-κB2 association. (PDF 185 kb)

Supplementary Fig. 6

Immunoblots for NF-κB subunits in Jurkat or A431 cell lysates. (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ishimaru, N., Kishimoto, H., Hayashi, Y. et al. Regulation of naive T cell function by the NF-κB2 pathway. Nat Immunol 7, 763–772 (2006). https://doi.org/10.1038/ni1351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing