Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Thymic stromal lymphopoietin in normal and pathogenic T cell development and function

Thymic stromal lymphopoietin, a four helix–bundle cytokine, is expressed mainly by barrier epithelial cells and is a potent activator of several cell types, particularly myeloid dendritic cells. TSLP influences the outcome of interactions between dendritic cells and CD4+ thymocytes and T cells in many situations, such as the regulation of the positive selection of regulatory T cells, maintenance of peripheral CD4+ T cell homeostasis and induction of CD4+ T cell–mediated allergic inflammation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Biological function of TSLP.

Kim Caesar

Figure 2: TSLP and DC activation in normal and pathogenic situations.

Kim Caesar

References

  1. Friend, S.L. et al. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp. Hematol. 22, 321–328 (1994).

    CAS  PubMed  Google Scholar 

  2. Sims, J.E. et al. Molecular cloning and biological characterization of a novel murine lymphoid growth factor. J. Exp. Med. 192, 671–680 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Reche, P.A. et al. Human thymic stromal lymphopoietin preferentially stimulates myeloid cells. J. Immunol. 167, 336–343 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Quentmeier, H. et al. Cloning of human thymic stromal lymphopoietin (TSLP) and signaling mechanisms leading to proliferation. Leukemia 15, 1286–1292 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Pandey, A. et al. Cloning of a novel rceptor subunit required for signaling by thymic stromal lymphopoietin. Nat. Immunol. 1, 59–64 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Park, L.S. et al. Cloning of the murine thymic stromal lymphopoetin (TSLP) receptor: Formation of a function heteromeric complex requires interleukin 7 receptor. J. Exp. Med. 192, 659–669 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Isaksen, D.E. et al. Requirement for Stat5 in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 163, 5971–5977 (1999).

    CAS  PubMed  Google Scholar 

  8. Hofmeister, R. et al. Interleukin 7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev. 10, 41–60 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Levin, S.D. et al. Thymic stromal lymphopoietin (TSLP): a cytokine that promotes the development of IgM+ cells in vitro and signals via a novel mechanism. J. Immunol. 162, 677–683 (1999).

    CAS  PubMed  Google Scholar 

  10. Fujio, K. et al. Molecular cloning of a novel type 1 cytokine receptor similar to the common gamma chain. Blood 95, 2204–2210 (2000).

    CAS  PubMed  Google Scholar 

  11. Hiroyama, T. et al. Molecular cloning and characterization of CRLM-2, a novel type I cytokine receptor preferentially expressed in hematopoietic cells. Biochem. Biophys. Res. Commun. 272, 224–229 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Carpino, N. et al. Absence of an essential role for thymic stromal lymphopoietin receptor in murine B-cell development. Mol. Cell. Biol. 24, 2584–2592 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vosshenrich, C.A.J., Cumano, A., Müller, W., DiSanto, J.P. & Vieira, P. Thymic stromal-derived lymphopoietin distinguishes fetal from adult B cell development. Nat. Immunol. 4, 773–779 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Vosshenrich, C.A.J., Cumano, A., Muller, W., Di Santo, J.P. & Vieira, P. Pre-B cell receptor expression is necessary for thymic stromal lymphopoietin responsiveness in the bone marrow but not in the liver environment. Proc. Natl. Acad. Sci. USA 101, 11070–11075 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Isaksen, D.E. et al. Uncoupling of proliferation and Stat5 activation in thymic stromal lymphopoietin-mediated signal transcduction. J. Immunol. 168, 3288–3294 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Al-Shami, A. et al. A role for thymic stromal lymphopoietin in CD4+ T cell development. J. Exp. Med. 200, 159–168 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Puel, A., Ziegler, S.F., Buckley, R.H. & Leonard, W.J. Defective IL7R expression in TB+NK+ severe combined immunodeficiency. Nat. Genet. 20, 394–397 (1998).

    Article  CAS  PubMed  Google Scholar 

  18. Giliani, S. et al. Interleukin-7 receptor α (IL-7Rα) deficiency: cellular and molecular bases. Analysis of clinical, immunological, and molecular features in 16 novel patients. Immunol. Rev. 203, 110–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Nussenzweig, M., Steinman, R.M., Gutchinov, B. & Cohn, Z.A. Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. J. Exp. Med. 152, 1070–1084 (1980).

    Article  CAS  PubMed  Google Scholar 

  20. Kondo, T. et al. Dendritic cells signal T cells in the absence of exogenous antigen. Nat. Immunol. 2, 932–938 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Brocker, T. Survival of mature CD4 T llymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–1232 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ge, Q., Palliser, D., Eisen, H.N. & Chen, J. Homeostatic T cell proliferation in a T cell-dendritic cell coculture system. Proc. Natl. Acad. Sci. USA 99, 2983–2988 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Watanabe, N. et al. Human thymic stromal lymphopoietin promotes dendritic cell–mediated CD4+ T cell homeostatic expansion. Nat. Immunol. 5, 426–434 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Madrenas, J. & Germain, R.N. Variant TCR ligands: new insights into the molecular basis of antigen-dependent signal transduction and T-cell activation. Semin. Immunol. 8, 83–101 (1996).

    Article  CAS  PubMed  Google Scholar 

  25. Rimoldi, M. et al. Intestinal immune homeostasis is regulated by the corsstalk between epithelial cells and dendritic cells. Nat. Immunol. 6, 507–514 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Watanabe, N. et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 436, 1181–1185 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Hassall, A.H. The Microscopic Anatomy of The Human Body in Health and Disease (Samuel Highly, London, 1849).

    Google Scholar 

  28. Blau, J.N. & Veall, N. The uptake and localization of proteins, Evans Blue, and carbon black in the normal and pathological thymus of the guinea-pit. Immunology 12, 363–372 (1967).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Blau, J.N. The uptake and localization of proteins, Evans Blue and carbon black in the normal and pathological thymus of the guinea-pit. Nature 208, 654–657 (1965).

    Article  Google Scholar 

  30. Senelar, R., Escola, M.J., Escola, R., Serrou, B. & Serre, A. Relationship between Hallall's corpuscles and thymocytes fate in guinea-pig foetus. Biomedicine 24, 112–122 (1976).

    CAS  PubMed  Google Scholar 

  31. Nishio, H., Matsui, K., Tsuji, H., Tamura, A. & Suzuki, K. Immunolocalization of the mitogen-activated protein kinase signaling pathway in Hassall's corpuscles of the human thymus. Acta Histochem. 103, 89–98 (2001).

    Article  CAS  PubMed  Google Scholar 

  32. He, W., Zhang, Y., Deng, Y. & Kabelitz, D. Inductin of TCR-γδ expression on triple-negative (CD348) human thymocytes. Comparative analysis of the effects IL-4 and IL-7. J. Immunol. 154, 3726–3731 (1995).

    CAS  PubMed  Google Scholar 

  33. Romagnani, P. et al. High CD30 ligand expression by epithelial cells and Hassal's corpuscles in the medulla of human thymus. Blood 91, 3323–3332 (1998).

    CAS  PubMed  Google Scholar 

  34. Le, P., Lazorick, S., Wichard, S., Haynes, L.P. & Singer, K.H. Regulation of cytokine production in the human thymus: epidermal growth factor and transforming growth factor α regulate mRNA levels of interleukin 1 α (IL-1α), IL-1β, and IL-6 in human thymic epithelial cells at a post-transcriptional level. J. Exp. Med. 174, 1147–1157 (1991).

    Article  CAS  PubMed  Google Scholar 

  35. Zaitseva, M. et al. Stromal-derived factor 1 expression in the human thymus. J. Immunol. 168, 2609–2617 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Annunziato, F. et al. Macrophage-derived chemokine and EBI1-ligand chemokine attract human thymocytes in different stage of development and are produced by distinct subsets of medullary epithelial cells: possible implications for negative selection. J. Immunol. 165, 238–246 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Salomon, B. et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12, 431–440 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Al-Shami, A., Spolski, R., Kelly, J., Keane-Myers, A. & Leonard, W.J. A role for TSLP in the development of inflammation in an asthma maodel. J. Exp. Med. 202, 829–839 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yoo, J. et al. Spontaneous atopic dermatitis in mice expressing an inducible thymic stromal lymphopoietin transgene specifically in the skin. J. Exp. Med. 202, 541–549 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhou, B. et al. Thymic stromal lymphopoietin as a key initiator of allergic airway inflammation in mice. Nat. Immunol. 6, 1047–1053 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Li, M. et al. Retinoid X receptor ablation in adult mouse keratinocytes generates an atopoic dermatits triggered by thymic stromal lymphopoietin. Proc. Natl. Acad. Sci. USA 102, 14795–14800 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Soumelis, V. et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 3, 673–680 (2002).

    Article  CAS  PubMed  Google Scholar 

  43. Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213–1223 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Moffatt, M.F. & Cookson, W.O. Tumour necrosis factor haplotypes and asthma. Hum. Mol. Genet. 6, 551–554 (1997).

    Article  CAS  PubMed  Google Scholar 

  45. Nanavaty, U., Goldstein, A.D. & Levine, S.J. Polymorphisms in candidate asthma genes. Am. J. Med. Sci. 321, 11–16 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. O'Garra, A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8, 275–283 (1998).

    Article  CAS  PubMed  Google Scholar 

  47. Fiorentino, D.F., Bond, M.W. & Mosmann, T.R. Two types of mouse T helper IV. Th2 clones secrete a factor that inhibits cytokine production by Th1 clones. J. Exp. Med. 170, 2081–2095 (1989).

    Article  CAS  PubMed  Google Scholar 

  48. Moore, K.W., de Waal-Malefyt, R., Coffman, R.L. & O'Garra, A. Interleukin-10 and the interleukin-10 receptor. Annu. Rev. Immunol. 19, 683–765 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Borish, L. et al. Interleukin-10 regulation in normal subjects and patients with asthma. J. Allergy Clin. Immunol. 97, 1288–1296 (1996).

    Article  CAS  PubMed  Google Scholar 

  50. Akbari, O., DeKruyff, R.H. & Umetsu, D.T. Pulmonary dendritic cells producting IL-10 mediate tolerance induced by respiratory exposure to antigen. Nat. Immunol. 2, 725–731 (2001).

    Article  CAS  PubMed  Google Scholar 

  51. Oh, J. et al. CD4 T-helper cells engineered to produce IL-10 prevent allergen-induced airway hyperreactivity and inflammation. J. Allergy Clin. Immunol. 110, 460–468 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Ying, S. et al. Thymic stromal lymphopoietin expression is increased in asthmatic airways and correlates with expression of Th2-attracting chemokines and disease severity. J. Immunol. 174, 8183–8190 (2005).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank D.J. Campbell, V. Soumelis, T. Ito, Y.H. Wang, N. Watanabe, S. Hanabashi and W. Cao for reviewing the manuscript. Supported by the National Institutes of Health (AI44259 and AI068731 to S.F.Z., and AI06645-01 to Y.-J.L.), the MD Anderson Cancer Research Foundation (Y.-J.L) and the Sandler Foundation (Y.-J.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Steven F Ziegler or Yong-Jun Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ziegler, S., Liu, YJ. Thymic stromal lymphopoietin in normal and pathogenic T cell development and function. Nat Immunol 7, 709–714 (2006). https://doi.org/10.1038/ni1360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing