Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling

Abstract

The Ubc13 E2 ubiquitin-conjugating enzyme is key in the process of 'tagging' target proteins with lysine 63–linked polyubiquitin chains, which are essential for the transmission of immune receptor signals culminating in activation of the transcription factor NF-κB. Here we demonstrate that conditional ablation of Ubc13 resulted in defective B cell development and in impaired B cell and macrophage activation. In response to all tested stimuli except tumor necrosis factor, Ubc13-deficient cells showed almost normal NF-κB activation but considerably impaired activation of mitogen-activated protein kinase. Ubc13-induced activation of mitogen-activated protein kinase required, at least in part, ubiquitination of the adaptor protein IKKγ. These results show that Ubc13 is key in the mammalian immune response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Defective proinflammatory cytokine production in Ubc13-deficient bone marrow macrophages.
Figure 2: Impaired B cell development in Ubc13fl/flCd19-Cre mice.
Figure 3: Ubc13 is required for B cell activation and in vivo immune responses.
Figure 4: NF-κB activation in Ubc13-deficient cells.
Figure 5: Impaired MAP kinase activation in Ubc13-deficient cells.
Figure 6: Ubc13-dependent ubiquitination of IKKγ in IL-1- and TLR-induced Jnk activation.

Similar content being viewed by others

References

  1. Ghosh, S. & Karin, M. Missing pieces in the NF-κB puzzle. Cell 109, S81–S96 (2002).

    Article  CAS  Google Scholar 

  2. Weil, R. & Israel, A. T-cell-receptor- and B-cell-receptor-mediated activation of NF-κB in lymphocytes. Curr. Opin. Immunol. 16, 374–381 (2004).

    Article  CAS  Google Scholar 

  3. Chang, L. & Karin, M. Mammalian MAP kinase signalling cascades. Nature 410, 37–40 (2001).

    Article  CAS  Google Scholar 

  4. Akira, S. & Takeda, K. Toll-like receptor signalling. Nat. Rev. Immunol. 4, 499–511 (2004).

    Article  CAS  Google Scholar 

  5. Kobayashi, T., Walsh, M.C. & Choi, Y. The role of TRAF6 in signal transduction and the immune response. Microbes Infect. 6, 1333–1338 (2004).

    Article  CAS  Google Scholar 

  6. Chung, J.Y., Park, Y.C., Ye, H. & Wu, H. All TRAFs are not created equal: common and distinct molecular mechanisms of TRAF-mediated signal transduction. J. Cell Sci. 115, 679–688 (2002).

    CAS  PubMed  Google Scholar 

  7. Lin, X. & Wang, D. The roles of CARMA1, Bcl10, and MALT1 in antigen receptor signaling. Semin. Immunol. 16, 429–435 (2004).

    Article  CAS  Google Scholar 

  8. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    Article  CAS  Google Scholar 

  9. Ruland, J., Duncan, G.S., Wakeham, A. & Mak, T.W. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 19, 749–758 (2003).

    Article  CAS  Google Scholar 

  10. Jun, J.E. et al. Identifying the MAGUK protein Carma-1 as a central regulator of humoral immune responses and atopy by genome-wide mouse mutagenesis. Immunity 18, 751–762 (2003).

    Article  CAS  Google Scholar 

  11. Hara, H. et al. The MAGUK family protein CARD11 is essential for lymphocyte activation. Immunity 18, 763–775 (2003).

    Article  CAS  Google Scholar 

  12. Egawa, T. et al. Requirement for CARMA1 in antigen receptor-induced NF-κB activation and lymphocyte proliferation. Curr. Biol. 13, 1252–1258 (2003).

    Article  CAS  Google Scholar 

  13. Ruefli-Brasse, A.A., French, D.M. & Dixit, V.M. Regulation of NF-κB-dependent lymphocyte activation and development by paracaspase. Science 302, 1581–1584 (2003).

    Article  CAS  Google Scholar 

  14. Newton, K. & Dixit, V.M. Mice lacking the CARD of CARMA1 exhibit defective B lymphocyte development and impaired proliferation of their B and T lymphocytes. Curr. Biol. 13, 1247–1251 (2003).

    Article  CAS  Google Scholar 

  15. Sun, L., Deng, L., Ea, C.K., Xia, Z.P. & Chen, Z.J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    Article  CAS  Google Scholar 

  16. Deng, L. et al. Activation of the IκB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351–361 (2000).

    Article  CAS  Google Scholar 

  17. Wang, C. et al. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412, 346–351 (2001).

    Article  CAS  Google Scholar 

  18. Shim, J.H. et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 19, 2668–2681 (2005).

    Article  CAS  Google Scholar 

  19. Sato, S. et al. Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat. Immunol. 6, 1087–1095 (2005).

    Article  CAS  Google Scholar 

  20. Spence, J., Sadis, S., Haas, A.L. & Finley, D. A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol. Cell. Biol. 15, 1265–1273 (1995).

    Article  CAS  Google Scholar 

  21. Pickart, C.M. & Fushman, D. Polyubiquitin chains: polymeric protein signals. Curr. Opin. Chem. Biol. 8, 610–616 (2004).

    Article  CAS  Google Scholar 

  22. Hofmann, R.M. & Pickart, C.M. Noncanonical MMS2-encoded ubiquitin-conjugating enzyme functions in assembly of novel polyubiquitin chains for DNA repair. Cell 96, 645–653 (1999).

    Article  CAS  Google Scholar 

  23. Muralidhar, M.G. & Thomas, J.B. The Drosophila bendless gene encodes a neural protein related to ubiquitin-conjugating enzymes. Neuron 11, 253–266 (1993).

    Article  CAS  Google Scholar 

  24. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004).

    Article  CAS  Google Scholar 

  25. Zhou, R. et al. The role of ubiquitination in Drosophila innate immunity. J. Biol. Chem. 280, 34048–34055 (2005).

    Article  CAS  Google Scholar 

  26. Andersen, P.L. et al. Distinct regulation of Ubc13 functions by the two ubiquitin-conjugating enzyme variants Mms2 and Uev1A. J. Cell Biol. 170, 745–755 (2005).

    Article  CAS  Google Scholar 

  27. Zhou, H., Du, M.Q. & Dixit, V.M. Constitutive NF-κB activation by the t(11;18)(q21;q21) product in MALT lymphoma is linked to deregulated ubiquitin ligase activity. Cancer Cell 7, 425–431 (2005).

    Article  CAS  Google Scholar 

  28. Habelhah, H. et al. Ubiquitination and translocation of TRAF2 is required for activation of JNK but not of p38 or NF-κB. EMBO J. 23, 322–332 (2004).

    Article  CAS  Google Scholar 

  29. Kobayashi, N. et al. Segregation of TRAF6-mediated signaling pathways clarifies its role in osteoclastogenesis. EMBO J. 20, 1271–1280 (2001).

    Article  CAS  Google Scholar 

  30. Gohda, J., Matsumura, T. & Inoue, J. Cutting edge: TNFR-associated factor (TRAF) 6 is essential for MyD88-dependent pathway but not toll/IL-1 receptor domain-containing adaptor-inducing IFN-β (TRIF)-dependent pathway in TLR signaling. J. Immunol. 173, 2913–2917 (2004).

    Article  CAS  Google Scholar 

  31. Xue, L. et al. Defective development and function of Bcl10-deficient follicular, marginal zone and B1 B cells. Nat. Immunol. 4, 857–865 (2003).

    Article  CAS  Google Scholar 

  32. Hayden, M.S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195–2224 (2004).

    Article  CAS  Google Scholar 

  33. Chen, Z.J. Ubiquitin signalling in the NF-κB pathway. Nat. Cell Biol. 7, 758–765 (2005).

    Article  CAS  Google Scholar 

  34. Carter, A.B., Monick, M.M. & Hunninghake, G.W. Both Erk and p38 kinases are necessary for cytokine gene transcription. Am. J. Respir. Cell Mol. Biol. 20, 751–758 (1999).

    Article  CAS  Google Scholar 

  35. Scherle, P.A. et al. Inhibition of MAP kinase kinase prevents cytokine and prostaglandin E2 production in lipopolysaccharide-stimulated monocytes. J. Immunol. 161, 5681–5686 (1998).

    CAS  PubMed  Google Scholar 

  36. Zhang, Y. et al. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430, 793–797 (2004).

    Article  CAS  Google Scholar 

  37. Shinohara, H. et al. PKC beta regulates BCR-mediated IKK activation by facilitating the interaction between TAK1 and CARMA1. J. Exp. Med. 202, 1423–1431 (2005).

    Article  CAS  Google Scholar 

  38. Shi, C.S. & Kehrl, J.H. Tumor necrosis factor (TNF)-induced germinal center kinase-related (GCKR) and stress-activated protein kinase (SAPK) activation depends upon the E2/E3 complex Ubc13-Uev1A/TNF receptor-associated factor 2 (TRAF2). J. Biol. Chem. 278, 15429–15434 (2003).

    Article  CAS  Google Scholar 

  39. Geetha, T., Kenchappa, R.S., Wooten, M.W. & Carter, B.D. TRAF6-mediated ubiquitination regulates nuclear translocation of NRIF, the p75 receptor interactor. EMBO J. 24, 3859–3868 (2005).

    Article  CAS  Google Scholar 

  40. Courtois, G., Whiteside, S.T., Sibley, C.H. & Israel, A. Characterization of a mutant cell line that does not activate NF-κB in response to multiple stimuli. Mol. Cell. Biol. 17, 1441–1449 (1997).

    Article  CAS  Google Scholar 

  41. Krappmann, D., Patke, A., Heissmeyer, V. & Scheidereit, C. B-cell receptor- and phorbol ester-induced NF-κB and c-Jun N-terminal kinase activation in B cells requires novel protein kinase C's. Mol. Cell. Biol. 21, 6640–6650 (2001).

    Article  CAS  Google Scholar 

  42. Leonardi, A., Chariot, A., Claudio, E., Cunningham, K. & Siebenlist, U. CIKS, a connection to IκB kinase and stress-activated protein kinase. Proc. Natl. Acad. Sci. USA 97, 10494–10499 (2000).

    Article  CAS  Google Scholar 

  43. Li, X. et al. Act1, an NF-κB-activating protein. Proc. Natl. Acad. Sci. USA 97, 10489–10493 (2000).

    Article  CAS  Google Scholar 

  44. Qian, Y. et al. Act1, a negative regulator in CD40- and BAFF-mediated B cell survival. Immunity 21, 575–587 (2004).

    Article  CAS  Google Scholar 

  45. Pasparakis, M., Schmidt-Supprian, M. & Rajewsky, K. IκB kinase signaling is essential for maintenance of mature B cells. J. Exp. Med. 196, 743–752 (2002).

    Article  CAS  Google Scholar 

  46. Li, Z.W., Omori, S.A., Labuda, T., Karin, M. & Rickert, R.C. IKKβ is required for peripheral B cell survival and proliferation. J. Immunol. 170, 4630–4637 (2003).

    Article  CAS  Google Scholar 

  47. Chen, Z. et al. Signal-induced site-specific phosphorylation targets IκBα to the ubiquitin-proteasome pathway. Genes Dev. 9, 1586–1597 (1995).

    Article  CAS  Google Scholar 

  48. Duncan, L.M. et al. Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J. 25, 1635–1645 (2006).

    Article  CAS  Google Scholar 

  49. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway. Science 301, 640–643 (2003).

    Article  CAS  Google Scholar 

  50. Singhirunnusorn, P., Suzuki, S., Kawasaki, N., Saiki, I. & Sakurai, H. Critical roles of threonine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-β-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAB1 and TAB2. J. Biol. Chem. 280, 7359–7368 (2005).

    Article  CAS  Google Scholar 

  51. Yamaoka, S. et al. Complementation cloning of NEMO, a component of the IκB kinase complex essential for NF-κB activation. Cell 93, 1231–1240 (1998).

    Article  CAS  Google Scholar 

  52. Schmidt-Supprian, M. et al. NEMO/IKKγ-deficient mice model incontinentia pigmenti. Mol. Cell 5, 981–992 (2000).

    Article  CAS  Google Scholar 

  53. Rickert, R.C., Roes, J. & Rajewsky, K. B lymphocyte-specific, Cre-mediated mutagenesis in mice. Nucleic Acids Res. 25, 1317–1318 (1997).

    Article  CAS  Google Scholar 

  54. Clausen, B.E., Burkhardt, C., Reith, W., Renkawitz, R. & Forster, I. Conditional gene targeting in macrophages and granulocytes using LysMcre mice. Transgenic Res. 8, 265–277 (1999).

    Article  CAS  Google Scholar 

  55. Yamamoto, M. et al. TRAM is specifically involved in the Toll-like receptor 4-mediated MyD88-independent signaling pathway. Nat. Immunol. 4, 1144–1150 (2003).

    Article  CAS  Google Scholar 

  56. Pomerantz, J.L., Denny, E.M. & Baltimore, D. CARD11 mediates factor-specific activation of NF-κB by the T cell receptor complex. EMBO J. 21, 5184–5194 (2002).

    Article  CAS  Google Scholar 

  57. Yamamoto, M. et al. Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IκBζ. Nature 430, 218–222 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Kitamura (The University of Tokyo, Tokyo, Japan) for Plat-E packaging cell lines; D.T. Golenbock (University of Massachusetts Medical School, Worcester, Massachusetts) for the NF-κB-dependent ELAM1 reporter plasmid; J.L. Pomerantz (The Johns Hopkins University School of Medicine, Baltimore, Maryland) for Card11 expression vectors; J. Inoue (The University of Tokyo, Tokyo, Japan) for the pFastBacHTa-TRAF6 vector; G. Courtois (Hôpital Saint-Louis, Paris, France) for the IKKγ-deficient 1.3E2 cell line; M. Pasparakis (European Molecular Biology Laboratory, Rome, Italy) for MEFs from IKKγ-deficient mice; R.C. Rickert (The Burnham Institute, La Jolla, California) for Cd19-Cre mice; I. Förster (University of Munich, Munich, Germany) for LyzsM-Cre mice; H. Hemmi, T. Yasui and T. Matsunaga for discussions; M. Hashimoto for secretarial assistance; and N. Okita, N. Iwami, N. Fukuda and M. Morita for technical assistance. Supported by Special Coordination Funds; the Ministry of Education, Culture, Sports, Science and Technology; Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists; The Uehara Memorial Foundation; The Naito Foundation and The Junior Research Associate from RIKEN; and Exploratory Research for Advanced Technology, Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to data analysis, experimental design, critical discussions and manuscript preparation; M.Y did all experimental studies; T.O. and Y.M. purified recombinant TRAF6; K.T. generated Ubc13-deficient mice; S.S. and S.U. prepared whole-cell extracts; T.S., N.Y. and S.Y. designed retroviral vectors; H.S. prepared antibodies; K.J.I., T.K. and O.T. played a pivotal role in discussions; and S.A. supervised all work.

Corresponding author

Correspondence to Shizuo Akira.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Generation of conditional Ubc13fl/fl mice (PDF 217 kb)

Supplementary Fig. 2

CD3+ T cells in spleens of Ubc13fl/flCd19-Cre mice. (PDF 123 kb)

Supplementary Fig. 3

NF-κB complexes and NF-κBp100 processing in Ubc13-deficient B cells. (PDF 317 kb)

Supplementary Fig. 4

Defective activation of MAP kinases and increased IRAK-1 ubiquitination in IKKγ-deficient cell lines (PDF 225 kb)

Supplementary Table 1

Genotype analysis of offspring from UBC13 heterozygous intercrosses. (PDF 71 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, M., Okamoto, T., Takeda, K. et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nat Immunol 7, 962–970 (2006). https://doi.org/10.1038/ni1367

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1367

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing