Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria

Abstract

Natural killer T (NKT) cells recognize glycosphingolipids presented by CD1d molecules and have been linked to defense against microbial infections. Previously defined foreign glycosphingolipids recognized by NKT cells are uniquely found in nonpathogenic sphingomonas bacteria. Here we show that mouse and human NKT cells also recognized glycolipids, specifically a diacylglycerol, from Borrelia burgdorferi, which causes Lyme disease. The B. burgdorferi–derived, glycolipid-induced NKT cell proliferation and cytokine production and the antigenic potency of this glycolipid was dependent on acyl chain length and saturation. These data indicate that NKT cells recognize categories of glycolipids beyond those in sphingomonas and suggest that NKT cell responses driven by T cell receptor–mediated glycolipid recognition may provide protection against diverse pathogens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: In vivo activation of Vα14i NKT cells by B. burgdorferi.
Figure 2: Structure of BbGL-II.
Figure 3: Vα14i NKT cell hybridomas respond to B. burgdorferi glycolipids.
Figure 4: Vα14i NKT cells bind CD1d tetramers loaded with BbGL-II.
Figure 5: In vitro proliferation of Vα14i NKT cells by a B. burgdorferi antigen.
Figure 6: In vivo response of Vα14i NKT cells to B. burgdorferi antigens.
Figure 7: MyD88-independent activation of Vα14i NKT cells by B. burgdorferi antigens.
Figure 8: Activation of human Vα24i NKT cells by diacylglycerol glycolipids.
Figure 9: Binding of B. burgdorferi glycolipid to mouse CD1d.

Similar content being viewed by others

References

  1. Godfrey, D.I. & Kronenberg, M. Going both ways: immune regulation via CD1d-dependent NKT cells. J. Clin. Invest. 114, 1379–1388 (2004).

    Article  CAS  Google Scholar 

  2. Kronenberg, M. Toward an understanding of NKT cell biology: progress and paradoxes. Annu. Rev. Immunol. 23, 877–900 (2005).

    Article  CAS  Google Scholar 

  3. Morita, M. et al. Structure-activity relationship of α-galactosylceramides against B16-bearing mice. J. Med. Chem. 38, 2176–2187 (1995).

    Article  CAS  Google Scholar 

  4. Kawano, T. et al. CD1d-restricted and TCR-mediated activation of Vα14 NKT cells by glycosylceramides. Science 278, 1626–1629 (1997).

    Article  CAS  Google Scholar 

  5. Skold, M. & Behar, S.M. Role of CD1d-restricted NKT cells in microbial immunity. Infect. Immun. 71, 5447–5455 (2003).

    Article  Google Scholar 

  6. Brigl, M. & Brenner, M.B. CD1: antigen presentation and T cell function. Annu. Rev. Immunol. 22, 817–890 (2004).

    Article  CAS  Google Scholar 

  7. Kinjo, Y. & Kronenberg, M. Vα14i NKT cells are innate lymphocytes that participate in the immune response to diverse microbes. J. Clin. Immunol. 25, 522–533 (2005).

    Article  CAS  Google Scholar 

  8. Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E. & Brenner, M.B. Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol. 4, 1230–1237 (2003).

    Article  CAS  Google Scholar 

  9. Mattner, J. et al. Exogenous and endogenous glycolipid antigens activate NKT cells during microbial infections. Nature 434, 525–529 (2005).

    Article  CAS  Google Scholar 

  10. Kinjo, Y. et al. Recognition of bacterial glycosphingolipids by natural killer T cells. Nature 434, 520–525 (2005).

    Article  CAS  Google Scholar 

  11. Sriram, V., Du, W., Gervay-Hague, J. & Brutkiewicz, R.R. Cell wall glycosphingolipids of Sphingomonas paucimobilis are CD1d-specific ligands for NKT cells. Eur. J. Immunol. 35, 1692–1701 (2005).

    Article  CAS  Google Scholar 

  12. Kawahara, K., Moll, H., Knirel, Y.A., Seydel, U. & Zahringer, U. Structural analysis of two glycosphingolipids from the lipopolysaccharide-lacking bacterium Sphingomonas capsulata. Eur. J. Biochem. 267, 1837–1846 (2000).

    Article  CAS  Google Scholar 

  13. Kawahara, K., Kubota, M., Sato, N., Tsuge, K. & Seto, Y. Occurrence of an α-galacturonosyl-ceramide in the dioxin-degrading bacterium Sphingomonas wittichii. FEMS Microbiol. Lett. 214, 289–294 (2002).

    CAS  PubMed  Google Scholar 

  14. Orloski, K.A., Hayes, E.B., Campbell, G.L. & Dennis, D.T. Surveillance for Lyme disease–United States, 1992–1998. MMWR CDC Surveill. Summ. 49, 1–11 (2000).

    CAS  PubMed  Google Scholar 

  15. Kumar, H., Belperron, A., Barthold, S.W. & Bockenstedt, L.K. Cutting edge: CD1d deficiency impairs murine host defense against the spirochete. Borrelia burgdorferi. J. Immunol. 165, 4797–4801 (2000).

    Article  CAS  Google Scholar 

  16. Matsuda, J.L. et al. Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med. 192, 741–754 (2000).

    Article  CAS  Google Scholar 

  17. Benlagha, K., Weiss, A., Beavis, A., Teyton, L. & Bendelac, A. In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med. 191, 1895–1903 (2000).

    Article  CAS  Google Scholar 

  18. Ben-Menachem, G., Kubler-Kielb, J., Coxon, B., Yergey, A. & Schneerson, R. A newly discovered cholesteryl galactoside from Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 100, 7913–7918 (2003).

    Article  CAS  Google Scholar 

  19. Schroder, N.W. et al. Acylated cholesteryl galactoside as a novel immunogenic motif in Borrelia burgdorferi sensu stricto. J. Biol. Chem. 278, 33645–33653 (2003).

    Article  Google Scholar 

  20. Cinco, M., Banfi, E., Balanzin, D., Godeas, C. & Panfili, E. Evidence for (lipo) oligosaccharides in Borrelia burgdorferi and their serological specificity. FEMS Microbiol. Immunol. 3, 33–38 (1991).

    Article  CAS  Google Scholar 

  21. Eiffert, H., Lotter, H., Jarecki-Khan, K. & Thomssen, R. Identification of an immunoreactive non-proteinaleous component in Borrelia burgdorferi. Med. Microbiol. Immunol. (Berl.) 180, 229–237 (1991).

    Article  CAS  Google Scholar 

  22. Wheeler, C.M. et al. Nonprotein antigens of Borrelia burgdorferi. J. Infect. Dis. 167, 665–674 (1993).

    Article  CAS  Google Scholar 

  23. Wu, D. et al. Design of natural killer T cell activators: structure and function of a microbial glycosphingolipid bound to mouse CD1d. Proc. Natl. Acad. Sci. USA 103, 3972–3977 (2006).

    Article  CAS  Google Scholar 

  24. Fischer, K. et al. Mycobacterial phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc. Natl. Acad. Sci. USA 101, 10685–10690 (2004).

    Article  CAS  Google Scholar 

  25. Fujii, S., Shimizu, K., Kronenberg, M. & Steinman, R.M. Prolonged IFN-γ-producing NKT response induced with α-galactosylceramide-loaded DCs. Nat. Immunol. 3, 867–874 (2002).

    Article  CAS  Google Scholar 

  26. Hoebe, K. et al. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424, 743–748 (2003).

    Article  CAS  Google Scholar 

  27. Zajonc, D.M., Ainge, G.D., Painter, G., Severn, W.B. & Wilson, I.A. Structural characterization of mycobacterial phosphatidylinositol mannoside binding to mouse CD1d. J. Immunol. (in the press).

  28. Brossay, L. et al. CD1d-mediated recognition of an α-galactosylceramide by natural killer T cells is highly conserved through mammalian evolution. J. Exp. Med. 188, 1521–1528 (1998).

    Article  CAS  Google Scholar 

  29. Neef, A., Witzenberger, R. & Kampfer, P. Detection of sphingomonads and in situ identification in activated sludge using 16S rRNA-targeted oligonucleotide probes. J. Ind. Microbiol. Biotechnol. 23, 261–267 (1999).

    Article  CAS  Google Scholar 

  30. Duthie, M.S., Kahn, M., White, M., Kapur, R.P. & Kahn, S.J. Critical proinflammatory and anti-inflammatory functions of different subsets of CD1d-restricted natural killer T cells during Trypanosoma cruzi infection. Infect. Immun. 73, 181–192 (2005).

    Article  CAS  Google Scholar 

  31. Wooten, R.M. & Weis, J.J. Host-pathogen interactions promoting inflammatory Lyme arthritis: use of mouse models for dissection of disease processes. Curr. Opin. Microbiol. 4, 274–279 (2001).

    Article  CAS  Google Scholar 

  32. Zhou, D. et al. Lysosomal glycosphingolipid recognition by NKT cells. Science 306, 1786–1789 (2004).

    Article  CAS  Google Scholar 

  33. Gumperz, J.E. et al. Murine CD1d-restricted T cell recognition of cellular lipids. Immunity 12, 211–221 (2000).

    Article  CAS  Google Scholar 

  34. Rauch, J. et al. Structural features of the acyl chain determine self-phospholipid antigen recognition by a CD1d-restricted invariant NKT (iNKT) cell. J. Biol. Chem. 278, 47508–47515 (2003).

    Article  CAS  Google Scholar 

  35. Brigl, M. et al. Conserved and heterogeneous lipid antigen specificities of CD1d-restricted NKT cell receptors. J. Immunol. 176, 3625–3634 (2006).

    Article  CAS  Google Scholar 

  36. Wu, D.Y., Segal, N.H., Sidobre, S., Kronenberg, M. & Chapman, P.B. Cross-presentation of disialoganglioside GD3 to natural killer T cells. J. Exp. Med. 198, 173–181 (2003).

    Article  CAS  Google Scholar 

  37. Zajonc, D.M. et al. Structure and function of a potent agonist for the semi-invariant natural killer T cell receptor. Nat. Immunol. 6, 810–818 (2005).

    Article  CAS  Google Scholar 

  38. Koch, M. et al. The crystal structure of human CD1d with and without α-galactosylceramide. Nat. Immunol. 6, 819–826 (2005).

    Article  CAS  Google Scholar 

  39. Zeng, Z. et al. Crystal structure of mouse CD1: An MHC-like fold with a large hydrophobic binding groove. Science 277, 339–345 (1997).

    Article  CAS  Google Scholar 

  40. Zajonc, D.M. et al. Structural basis for CD1d presentation of a sulfatide derived from myelin and its implications for autoimmunity. J. Exp. Med. 202, 1517–1526 (2005).

    Article  CAS  Google Scholar 

  41. Miyamoto, K., Miyake, S. & Yamamura, T. A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature 413, 531–534 (2001).

    Article  CAS  Google Scholar 

  42. Goff, R.D. et al. Effects of lipid chain lengths in α-galactosylceramides on cytokine release by natural killer T cells. J. Am. Chem. Soc. 126, 13602–13603 (2004).

    Article  CAS  Google Scholar 

  43. Yu, K.O. et al. Modulation of CD1d-restricted NKT cell responses by using N-acyl variants of α-galactosylceramides. Proc. Natl. Acad. Sci. USA 102, 3383–3388 (2005).

    Article  CAS  Google Scholar 

  44. Slomiany, B.L., Murty, V.L., Liau, Y.H. & Slomiany, A. Animal glycoglycerolipids. Prog. Lipid Res. 26, 29–51 (1987).

    Article  CAS  Google Scholar 

  45. Ainge, G.D. et al. Phosphatidylinositol mannosides: synthesis and adjuvant properties of phosphatidylinositol di- and tetramannosides. Bioorg. Med. Chem. (in the press).

  46. Sellati, T.J. et al. Activation of human monocytic cells by Borrelia burgdorferi and Treponema pallidum is facilitated by CD14 and correlates with surface exposure of spirochetal lipoproteins. J. Immunol. 163, 2049–2056 (1999).

    CAS  PubMed  Google Scholar 

  47. Benhnia, M.R. et al. Signaling through CD14 attenuates the inflammatory response to Borrelia burgdorferi, the agent of Lyme disease. J. Immunol. 174, 1539–1548 (2005).

    Article  CAS  Google Scholar 

  48. Yang, X. et al. Identification, characterization, and expression of three new members of the Borrelia burgdorferi Mlp (2.9) lipoprotein gene family. Infect. Immun. 67, 6008–6018 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Sidobre, S. et al. The Vα14 NKT cell TCR exhibits high-affinity binding to a glycolipid/CD1d complex. J. Immunol. 169, 1340–1348 (2002).

    Article  CAS  Google Scholar 

  50. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M.J. Caimano (University of Connecticut Health Science Center, Farmington, Connecticut) for B. burgdorferi–infected ticks; E. Janssen and S. McBride (La Jolla Institute for Allergy & Immunology, La Jolla, California) for TrifLps2/Lps2 mice; V. Kumar (Torrey Pines Institute for Molecular Studies, San Diego, California) for the sulfatide-reactive T cell hybridoma; N. Nagarajan, R. Severins, Y.W. Zhu (La Jolla Institute for Allergy & Immunology, La Jolla, California) and P. Rogers (Gemini Science, San Diego, California) for technical assistance; and G. Kim (La Jolla Institute for Allergy & Immunology, La Jolla, California) and M.A. Poles (New York University School of Medicine, New York, New York) for suggestions. Supported by the National Institutes of Health (AI45053 and AI71922 to M.K.; GM62116 to M.K. and I.A.W.; GM44154 to C.-H.W.; AI054546 to T.J.S.; CA58896 to I.A.W.; and AI062842 to M.T.), the Arthritis Foundation (T.J.S.) and the Cancer Research Institute (Y.K.).

Author information

Authors and Affiliations

Authors

Contributions

Y.K. and E.T. designed and did most of the experiments and prepared the manuscript; D.W., M.F. and C.-H.W. synthesized the BbGL-II compounds and helped with the manuscript; R.G.-N. and M.T. did the human NKT cell experiments; M.R.B., T.J.S. and E.T. did the experiments with live bacteria; D.M.Z. and I.A.W. did the molecular modeling of the binding of BbGL-IIc in the CD1d structure and helped with the manuscript; G.B.-M. provided purified BbGL-I and BbGL-II; G.D.A. and G.F.P. provided the PIM4 compounds; A.K. prepared CD1d proteins; K.H. and B.B. generated the TrifLps2/Lps2 mice; S.M.B. generated the hybridoma 24.9E; and M.K. provided overall supervision, helped design all the experiments and prepared the manuscript.

Corresponding author

Correspondence to Mitchell Kronenberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Additional Vα14i NKT cell hybridomas respond to B. burgdorferi glycolipids. (PDF 21 kb)

Supplementary Fig. 2

CD1d reactive T cell hybridomas that do not express Vα14i are not BbGl-2 reactive. (PDF 14 kb)

Supplementary Fig. 3

PIM4 does not stimulate Vα14i NKT cells in vivo. (PDF 29 kb)

Supplementary Fig. 4

BbGL compounds do not cause inflammatory cytokine production by DC. (PDF 45 kb)

Supplementary Fig. 5

TRIF-independent activation of Vα14i NKT cells by B. burgdorferi antigen. (PDF 20 kb)

Supplementary Methods (PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinjo, Y., Tupin, E., Wu, D. et al. Natural killer T cells recognize diacylglycerol antigens from pathogenic bacteria. Nat Immunol 7, 978–986 (2006). https://doi.org/10.1038/ni1380

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1380

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing