Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interface-disrupting amino acids establish specificity between T cell receptors and complexes of major histocompatibility complex and peptide

Abstract

T cell receptors (TCRs) bind complexes of cognate major histocompatibility complex (MHC) and peptide at relatively low affinities (1–200 μM). Nevertheless, TCR-MHC-peptide interactions are usually specific for the peptide and the allele encoding the MHC. Here we show that to escape thymocyte negative selection, TCRs must interact with many of the side chains of MHC-peptide complexes as 'hot spots' for TCR binding. Moreover, even when the 'parental' side chain did not contribute binding affinity, some MHC-peptide residues contributed to TCR specificity, as amino acid substitutions substantially reduced binding affinity. The presence of such 'interface-disruptive' side chains helps to explain how TCRs generate specificity at low-affinity interfaces and why TCRs often 'accommodate' a subset of amino acids at a given MHC-peptide position.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Side chains of the MHC-bound peptide can contribute specificity to recognition by TCRs even if the 'parental' side chain does not contribute binding energy to the reaction.
Figure 2: Construction of a standard curve of the binding of TCRs to wild-type I-Ab + 3K and mutants of I-Ab + 3K displayed on insect cells relative to the known affinities of each interaction.
Figure 3: The ΔΔG for TCRs binding to I-Ab + 3K with amino acid substitutions at each of the five potential TCR contact residues of the I-Ab α-chain, peptide and I-Ab β-chain.
Figure 4: 'Footprint' analyses of the side chains of I-Ab + 3K that contribute binding affinity or contribute specificity through the ability to disrupt the binding of TCRs.

Similar content being viewed by others

References

  1. Davis, M.M. & Bjorkman, P.J. T-cell antigen receptor genes and T-cell recognition. Nature 334, 395–402 (1988).

    Article  CAS  Google Scholar 

  2. Kappler, J.W., Roehm, N. & Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 49, 273–280 (1987).

    Article  CAS  Google Scholar 

  3. Sprent, J., Lo, D., Gao, E.K. & Ron, Y. T cell selection in the thymus. Immunol. Rev. 101, 173–190 (1988).

    Article  CAS  Google Scholar 

  4. Mathis, D. & Benoist, C. Back to central tolerance. Immunity 20, 509–516 (2004).

    Article  CAS  Google Scholar 

  5. Palmer, E. Negative selection–clearing out the bad apples from the T-cell repertoire. Nat. Rev. Immunol. 3, 383–391 (2003).

    Article  CAS  Google Scholar 

  6. Starr, T.K., Jameson, S.C. & Hogquist, K.A. Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003).

    Article  CAS  Google Scholar 

  7. vonBoehmer, H. et al. Thymic selection revisited: how essential is it? Immunol. Rev. 191, 62–78 (2003).

    Article  CAS  Google Scholar 

  8. Wilson, D.B. & Nowell, P.C. Quantitative studies on the mixed lymphocyte interaction in rats. IV. Immunologic potentiality of the responding cells. J. Exp. Med. 131, 391–407 (1970).

    Article  CAS  Google Scholar 

  9. Suchin, E.J. et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol. 166, 973–981 (2001).

    Article  CAS  Google Scholar 

  10. Yeh, E.T., Benacerraf, B. & Rock, K.L. Analysis of thymocyte MHC specificity with thymocyte hybridomas. J. Exp. Med. 160, 799–813 (1984).

    Article  CAS  Google Scholar 

  11. Merkenschlager, M. et al. How many thymocytes audition for selection? J. Exp. Med. 186, 1149–1158 (1997).

    Article  CAS  Google Scholar 

  12. Zerrahn, J., Held, W. & Raulet, D.H. The MHC reactivity of the T cell repertoire prior to positive and negative selection. Cell 88, 627–636 (1997).

    Article  CAS  Google Scholar 

  13. Henderson, S.C. et al. CD4+ T cells mature in the absence of MHC class I and class II expression in Ly-6A.2 transgenic mice. J. Immunol. 161, 175–182 (1998).

    CAS  PubMed  Google Scholar 

  14. Bevan, M.J. In a radiation chimaera, host H-2 antigens determine immune responsiveness of donor cytotoxic cells. Nature 269, 417–418 (1977).

    Article  CAS  Google Scholar 

  15. Berg, L.J. et al. Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell 58, 1035–1046 (1989).

    Article  CAS  Google Scholar 

  16. Scott, B., Bluthmann, H., Teh, H.S. & von Boehmer, H. The generation of mature T cells requires interaction of the αβ T-cell receptor with major histocompatibility antigens. Nature 338, 591–593 (1989).

    Article  CAS  Google Scholar 

  17. Ashton-Rickardt, P.G., Van Kaer, L., Schumacher, T.N., Ploegh, H.L. & Tonegawa, S. Peptide contributes to the specificity of positive selection of CD8+ T cells in the thymus. Cell 73, 1041–1049 (1993).

    Article  CAS  Google Scholar 

  18. Hogquist, K.A., Gavin, M.A. & Bevan, M.J. Positive selection of CD8+ T cells induced by major histocompatibility complex binding peptides in fetal thymic organ culture. J. Exp. Med. 177, 1469–1473 (1993).

    Article  CAS  Google Scholar 

  19. Huseby, E.S. et al. How the T cell repertoire becomes peptide and MHC specific. Cell 122, 247–260 (2005).

    Article  CAS  Google Scholar 

  20. Ignatowicz, L., Kappler, J. & Marrack, P. The repertoire of T cells shaped by a single MHC/peptide ligand. Cell 84, 521–529 (1996).

    Article  CAS  Google Scholar 

  21. Fung-Leung, W.P. et al. Antigen presentation and T cell development in H2-M-deficient mice. Science 271, 1278–1281 (1996).

    Article  CAS  Google Scholar 

  22. Martin, W.D. et al. H2-M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell 84, 543–550 (1996).

    Article  CAS  Google Scholar 

  23. Miyazaki, T. et al. Mice lacking H2-M complexes, enigmatic elements of the MHC class II peptide-loading pathway. Cell 84, 531–541 (1996).

    Article  CAS  Google Scholar 

  24. Clackson, T. & Wells, J.A. A hot spot of binding energy in a hormone-receptor interface. Science 267, 383–386 (1995).

    Article  CAS  Google Scholar 

  25. DeLano, W.L. Unraveling hot spots in binding interfaces: progress and challenges. Curr. Opin. Struct. Biol. 12, 14–20 (2002).

    Article  CAS  Google Scholar 

  26. Crawford, F., Huseby, E., White, J., Marrack, P. & Kappler, J. Mimotopes for alloreactive and conventional T cells in a peptide-MHC display library. PLOS Biol. 2, E90 (2004).

    Article  Google Scholar 

  27. Crawford, F., Kozono, H., White, J., Marrack, P. & Kappler, J. Detection of antigen-specific T cells with multivalent soluble class II MHC covalent peptide complexes. Immunity 8, 675–682 (1998).

    Article  CAS  Google Scholar 

  28. Savage, P.A., Boniface, J.J. & Davis, M.M. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity 10, 485–492 (1999).

    Article  CAS  Google Scholar 

  29. Liu, X. et al. Alternate interactions define the binding of peptides to the MHC molecule IA(b). Proc. Natl. Acad. Sci. USA 99, 8820–8825 (2002).

    Article  CAS  Google Scholar 

  30. Jorgensen, J.L., Reay, P.A., Ehrich, E.W. & Davis, M.M. Molecular components of T-cell recognition. Annu. Rev. Immunol. 10, 835–873 (1992).

    Article  CAS  Google Scholar 

  31. Boehncke, W.H. et al. The importance of dominant negative effects of amino acid side chain substitution in peptide-MHC molecule interactions and T cell recognition. J. Immunol. 150, 331–341 (1993).

    CAS  PubMed  Google Scholar 

  32. Alam, S.M. et al. T-cell-receptor affinity and thymocyte positive selection. Nature 381, 616–620 (1996).

    Article  CAS  Google Scholar 

  33. Lyons, D.S. et al. A TCR binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity 5, 53–61 (1996).

    Article  CAS  Google Scholar 

  34. Sloan-Lancaster, J. & Allen, P.M. Altered peptide ligand-induced partial T cell activation: molecular mechanisms and role in T cell biology. Annu. Rev. Immunol. 14, 1–27 (1996).

    Article  CAS  Google Scholar 

  35. Zinkernagel, R.M. & Doherty, P.C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248, 701–702 (1974).

    Article  CAS  Google Scholar 

  36. Huseby, E.S., Crawford, F., White, J., Kappler, J. & Marrack, P. Negative selection imparts peptide specificity to the mature T cell repertoire. Proc. Natl. Acad. Sci. USA 100, 11565–11570 (2003).

    Article  CAS  Google Scholar 

  37. Bhat, T.N. et al. Bound water molecules and conformational stabilization help mediate an antigen-antibody association. Proc. Natl. Acad. Sci. USA 91, 1089–1093 (1994).

    Article  CAS  Google Scholar 

  38. Garboczi, D.N. & Biddison, W.E. Shapes of MHC restriction. Immunity 10, 1–7 (1999).

    Article  CAS  Google Scholar 

  39. Garcia, K.C., Teyton, L. & Wilson, I.A. Structural basis of T cell recognition. Annu. Rev. Immunol. 17, 369–397 (1999).

    Article  CAS  Google Scholar 

  40. Manning, T.C. et al. Alanine scanning mutagenesis of an αβ T cell receptor: mapping the energy of antigen recognition. Immunity 8, 413–425 (1998).

    Article  CAS  Google Scholar 

  41. Baker, B.M., Turner, R.V., Gagnon, S.J., Wiley, D.C. & Biddison, W.E. Identification of a crucial energetic footprint on the α1 helix of human histocompatibility leukocyte antigen (HLA)-A2 that provides functional interactions for recognition by tax peptide/HLA-A2-specific T cell receptors. J. Exp. Med. 193, 551–562 (2001).

    Article  CAS  Google Scholar 

  42. Wu, L.C., Tuot, D.S., Lyons, D.S., Garcia, K.C. & Davis, M.M. Two-step binding mechanism for T-cell receptor recognition of peptide MHC. Nature 418, 552–556 (2002).

    Article  CAS  Google Scholar 

  43. Borg, N.A. et al. The CDR3 regions of an immunodominant T cell receptor dictate the 'energetic landscape' of peptide-MHC recognition. Nat. Immunol. 6, 171–180 (2005).

    Article  CAS  Google Scholar 

  44. Davis, M.M. et al. Ligand recognition by αβ T cell receptors. Annu. Rev. Immunol. 16, 523–544 (1998).

    Article  CAS  Google Scholar 

  45. Rudolph, M.G., Luz, J.G. & Wilson, I.A. Structural and thermodynamic correlates of T cell signaling. Annu. Rev. Biophys. Biomol. Struct. 31, 121–149 (2002).

    Article  CAS  Google Scholar 

  46. Cunningham, B.C. & Wells, J.A. High-resolution epitope mapping of hGH-receptor interactions by alanine-scanning mutagenesis. Science 244, 1081–1085 (1989).

    Article  CAS  Google Scholar 

  47. Cunningham, B.C., Jhurani, P., Ng, P. & Wells, J.A. Receptor and antibody epitopes in human growth hormone identified by homolog-scanning mutagenesis. Science 243, 1330–1336 (1989).

    Article  CAS  Google Scholar 

  48. Mason, D. A very high level of crossreactivity is an essential feature of the T-cell receptor. Immunol. Today 19, 395–404 (1998).

    Article  CAS  Google Scholar 

  49. Gagnon, S.J. et al. Unraveling a hotspot for TCR recognition on HLA-A2: evidence against the existence of peptide-independent TCR binding determinants. J. Mol. Biol. 353, 556–573 (2005).

    Article  CAS  Google Scholar 

  50. McFarland, B.J., Kortemme, T., Yu, S.F., Baker, D. & Strong, R.K. Symmetry recognizing asymmetry: analysis of the interactions between the C-type lectin-like immunoreceptor NKG2D and MHC class I-like ligands. Structure 11, 411–422 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Murphy and S. Dai for discussions. Supported the US Public Health Service (AI-17134, AI-18785, AI-52225, AI-22295 and P30CA046934).

Author information

Authors and Affiliations

Authors

Contributions

E.S.H., F.C., J.W. and J.W.K. did the experiments; P.M. made the cells from which the TCRs were derived; and E.S.H., P.M. and J.W.K. wrote the paper with the help of J.W. and F.C.

Corresponding author

Correspondence to Philippa Marrack.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

TCR sequences of Specific and Cross Reactive TCRs. (PDF 41 kb)

Supplementary Table 2

Comparison of TCR-MHC-peptide binding affinities by Surface Plasmon Resonance versus staining cells with fluorescently labeled TCRs. (PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huseby, E., Crawford, F., White, J. et al. Interface-disrupting amino acids establish specificity between T cell receptors and complexes of major histocompatibility complex and peptide. Nat Immunol 7, 1191–1199 (2006). https://doi.org/10.1038/ni1401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1401

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing