Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HLA-DM targets the hydrogen bond between the histidine at position β81 and peptide to dissociate HLA-DR–peptide complexes

Abstract

The peptide editor HLA-DM (DM) mediates exchange of peptides bound to major histocompatibility (MHC) class II molecules during antigen processing; however, the mechanism by which DM displaces peptides remains unclear. Here we generated a soluble mutant HLA-DR1 with a histidine-to-asparagine substitution at position 81 of the β-chain (DR1βH81N) to perturb an important hydrogen bond between MHC class II and peptide. Peptide–DR1βH81N complexes dissociated at rates similar to the dissociation rates of DM-induced peptide–wild-type DR1, and DM did not enhance the dissociation of peptide–DR1βH81N complexes. Reintroduction of an appropriate hydrogen bond (DR1βH81N βV85H) restored DM-mediated peptide dissociation. Thus, DR1βH81N might represent a 'post-DM effect' conformation. We suggest that DM may mediate peptide dissociation by a 'hit-and-run' mechanism that results in conformational changes in MHC class II molecules and disruption of hydrogen bonds between βHis81 and bound peptide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DR1βH81N binds peptides to form complexes similar to peptide–DR1WT.
Figure 2: Kinetics of dissociation of peptides in the absence of DM are faster for mutant DR1βH81N and resemble DM-mediated peptide dissociation.
Figure 3: Pocket 1 of HA(306–318)–DR1.
Figure 4: DM has a minimal effect on the dissociation of peptide from DR1βH81N.
Figure 5: The βH81N substitution does not alter the interaction of DM with DR.
Figure 6: Reintroduction of an appropriate histidine residue partially restores DM-mediated dissociation.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Neefjes, J.J., Stollorz, V., Peters, P.J., Geuze, H.J. & Ploegh, H.L. The biosynthetic pathway of MHC class II but not class I molecules intersects the endocytic route. Cell 61, 171–183 (1990).

    Article  CAS  Google Scholar 

  2. Peters, P.J., Neefjes, J.J., Oorschot, V., Ploegh, H.L. & Geuze, H.J. Segregation of MHC class II molecules from MHC class I molecules in the Golgi complex for transport to lysosomal compartments. Nature 349, 669–676 (1991).

    Article  CAS  Google Scholar 

  3. Blum, J.S. & Cresswell, P. Role for intracellular proteases in the processing and transport of class II HLA antigens. Proc. Natl. Acad. Sci. USA 85, 3975–3979 (1988).

    Article  CAS  Google Scholar 

  4. Cresswell, P. Assembly, transport, and function of MHC class II molecules. Annu. Rev. Immunol. 12, 259–293 (1994).

    Article  CAS  Google Scholar 

  5. Sadegh-Nasseri, S. & McConnell, H.M. A kinetic intermediate in the reaction of an antigenic peptide and I-Ek. Nature 337, 274–276 (1989).

    Article  CAS  Google Scholar 

  6. Sadegh-Nasseri, S. & Germain, R.N. A role for peptide in determining MHC class II structure. Nature 353, 167–170 (1991).

    Article  CAS  Google Scholar 

  7. Sadegh-Nasseri, S. & Germain, R.N. How MHC class II molecules work: peptide-dependent completion of protein folding. Immunol. Today 13, 43–46 (1992).

    Article  CAS  Google Scholar 

  8. Sadegh-Nasseri, S., Stern, L.J., Wiley, D.C. & Germain, R.N. MHC class II function preserved by low-affinity peptide interactions preceding stable binding. Nature 370, 647–650 (1994).

    Article  CAS  Google Scholar 

  9. Castellino, F., Zhong, G. & Germain, R.N. Antigen presentation by MHC class II molecules: invariant chain function, protein trafficking, and the molecular basis of diverse determinant capture. Hum. Immunol. 54, 159–169 (1997).

    Article  CAS  Google Scholar 

  10. Romagnoli, P. & Germain, R.N. The CLIP region of invariant chain plays a critical role in regulating major histocompatibility complex class II folding, transport, and peptide occupancy. J. Exp. Med. 180, 1107–1113 (1994).

    Article  CAS  Google Scholar 

  11. Natarajan, S.K., Assadi, M. & Sadegh-Nasseri, S. Stable peptide binding to MHC class II molecule is rapid and is determined by a receptive conformation shaped by prior association with low affinity peptides. J. Immunol. 162, 4030–4036 (1999).

    CAS  PubMed  Google Scholar 

  12. Sato, A.K. et al. Determinants of the peptide-induced conformational change in the human class II major histocompatibility complex protein HLA-DR1. J. Biol. Chem. 275, 2165–2173 (2000).

    Article  CAS  Google Scholar 

  13. Carven, G.J. & Stern, L.J. Probing the ligand-induced conformational change in HLA-DR1 by selective chemical modification and mass spectrometric mapping. Biochemistry 44, 13625–13637 (2005).

    Article  CAS  Google Scholar 

  14. Denzin, L.K., Robbins, N.F., Carboy-Newcomb, C. & Cresswell, P. Assembly and intracellular transport of HLA-DM and correction of the class II antigen-processing defect in T2 cells. Immunity 1, 595–606 (1994).

    Article  CAS  Google Scholar 

  15. Fung-Leung, W.P. et al. Antigen presentation and T cell development in H2-M-deficient mice. Science 271, 1278–1281 (1996).

    Article  CAS  Google Scholar 

  16. Denzin, L.K. & Cresswell, P. HLA-DM induces CLIP dissociation from MHC class II αβ dimers and facilitates peptide loading. Cell 82, 155–165 (1995).

    Article  CAS  Google Scholar 

  17. Green, J.M., DeMars, R., Xu, X. & Pierce, S.K. The intracellular transport of MHC class II molecules in the absence of HLA-DM. J. Immunol. 155, 3759–3768 (1995).

    CAS  PubMed  Google Scholar 

  18. Kropshofer, H., Arndt, S.O., Moldenhauer, G., Hammerling, G.J. & Vogt, A.B. HLA-DM acts as a molecular chaperone and rescues empty HLA-DR molecules at lysosomal pH. Immunity 6, 293–302 (1997).

    Article  CAS  Google Scholar 

  19. Kropshofer, H. et al. Editing of the HLA-DR-peptide repertoire by HLA-DM. EMBO J. 15, 6144–6154 (1996).

    Article  CAS  Google Scholar 

  20. Miyazaki, T. et al. Mice lacking H2-M complexes, enigmatic elements of the MHC class II peptide-loading pathway. Cell 84, 531–541 (1996).

    Article  CAS  Google Scholar 

  21. Martin, W.D. et al. H2-M mutant mice are defective in the peptide loading of class II molecules, antigen presentation, and T cell repertoire selection. Cell 84, 543–550 (1996).

    Article  CAS  Google Scholar 

  22. Weber, D.A., Evavold, B.D. & Jensen, P.E. Enhanced dissociation of HLA-DR-bound peptides in the presence of HLA-DM. Science 274, 618–620 (1996).

    Article  CAS  Google Scholar 

  23. Ullrich, H.J. et al. Interaction between HLA-DM and HLA-DR involves regions that undergo conformational changes at lysosomal pH. Proc. Natl. Acad. Sci. USA 94, 13163–13168 (1997).

    Article  CAS  Google Scholar 

  24. Vogt, A.B., Moldenhauer, G., Hammerling, G.J. & Kropshofer, H. HLA-DM stabilizes empty HLA-DR molecules in a chaperone-like fashion. Immunol. Lett. 57, 209–211 (1997).

    Article  CAS  Google Scholar 

  25. Chou, C.L. & Sadegh-Nasseri, S. HLA-DM recognizes the flexible conformation of major histocompatibility complex class II. J. Exp. Med. 192, 1697–1706 (2000).

    Article  CAS  Google Scholar 

  26. Doebele, R.C., Busch, R., Scott, H.M., Pashine, A. & Mellins, E.D. Determination of the HLA-DM interaction site on HLA-DR molecules. Immunity 13, 517–527 (2000).

    Article  CAS  Google Scholar 

  27. Lazarski, C.A. et al. The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. Immunity 23, 29–40 (2005).

    Article  CAS  Google Scholar 

  28. Lazarski, C.A., Chaves, F.A. & Sant, A.J. The impact of DM on MHC class II-restricted antigen presentation can be altered by manipulation of MHC-peptide kinetic stability. J. Exp. Med. 203, 1319–1328 (2006).

    Article  CAS  Google Scholar 

  29. Belmares, M.P., Busch, R., Mellins, E.D. & McConnell, H.M. Formation of two peptide/MHC II isomers is catalyzed differentially by HLA-DM. Biochemistry 42, 838–847 (2003).

    Article  CAS  Google Scholar 

  30. Pashine, A. et al. Interaction of HLA-DR with an acidic face of HLA-DM disrupts sequence-dependent interactions with peptides. Immunity 19, 183–192 (2003).

    Article  CAS  Google Scholar 

  31. Stratikos, E., Wiley, D.C. & Stern, L.J. Enhanced catalytic action of HLA-DM on the exchange of peptides lacking backbone hydrogen bonds between their N-terminal region and the MHC class II α-chain. J. Immunol. 172, 1109–1117 (2004).

    Article  CAS  Google Scholar 

  32. Pu, Z., Lovitch, S.B., Bikoff, E.K. & Unanue, E.R. T cells distinguish MHC-peptide complexes formed in separate vesicles and edited by H2-DM. Immunity 20, 467–476 (2004).

    Article  CAS  Google Scholar 

  33. Stern, L.J. et al. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 368, 215–221 (1994).

    Article  CAS  Google Scholar 

  34. Murthy, V.L. & Stern, L.J. The class II MHC protein HLA-DR1 in complex with an endogenous peptide: implications for the structural basis of the specificity of peptide binding. Structure 5, 1385–1396 (1997).

    Article  CAS  Google Scholar 

  35. Fremont, D.H., Hendrickson, W.A., Marrack, P. & Kappler, J. Structures of an MHC class II molecule with covalently bound single peptides. Science 272, 1001–1004 (1996).

    Article  CAS  Google Scholar 

  36. Fremont, D.H., Monnaie, D., Nelson, C.A., Hendrickson, W.A. & Unanue, E.R. Crystal structure of I-Ak in complex with a dominant epitope of lysozyme. Immunity 8, 305–317 (1998).

    Article  CAS  Google Scholar 

  37. McFarland, B.J., Katz, J.F., Sant, A.J. & Beeson, C. Energetics and cooperativity of the hydrogen bonding and anchor interactions that bind peptides to MHC class II protein. J. Mol. Biol. 350, 170–183 (2005).

    Article  CAS  Google Scholar 

  38. Wilson, N., Fremont, D., Marrack, P. & Kappler, J. Mutations changing the kinetics of class II MHC peptide exchange. Immunity 14, 513–522 (2001).

    Article  CAS  Google Scholar 

  39. McFarland, B.J., Beeson, C. & Sant, A.J. Cutting edge: a single, essential hydrogen bond controls the stability of peptide-MHC class II complexes. J. Immunol. 163, 3567–3571 (1999).

    CAS  PubMed  Google Scholar 

  40. Saito, K., Oda, M., Sarai, A., Azuma, T. & Kozono, H. Contribution of a single hydrogen bond between βHis81 of MHC class II I-Ek and the bound peptide to the pH-dependent thermal stability. Microbiol. Immunol. 48, 53–57 (2004).

    Article  CAS  Google Scholar 

  41. DeLano, W.L. PyMol. (DeLano Scientific, San Carlos, California, 2002).

    Google Scholar 

  42. Jardetzky, T.S. et al. Peptide binding to HLA-DR1: a peptide with most residues substituted to alanine retains MHC binding. EMBO J. 9, 1797–1803 (1990).

    Article  CAS  Google Scholar 

  43. Natarajan, S.K., Stern, L.J. & Sadegh-Nasseri, S. Sodium dodecyl sulfate stability of HLA-DR1 complexes correlates with burial of hydrophobic residues in pocket 1. J. Immunol. 162, 3463–3470 (1999).

    CAS  PubMed  Google Scholar 

  44. McNally, J.G., Muller, W.G., Walker, D., Wolford, R. & Hager, G.L. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287, 1262–1265 (2000).

    Article  CAS  Google Scholar 

  45. Rigaud, G., Roux, J., Pictet, R. & Grange, T. In vivo footprinting of rat TAT gene: dynamic interplay between the glucocorticoid receptor and a liver-specific factor. Cell 67, 977–986 (1991).

    Article  CAS  Google Scholar 

  46. Zwart, W. et al. Spatial separation of HLA-DM/HLA-DR interactions within MIIC and phagosome-induced immune escape. Immunity 22, 221–233 (2005).

    Article  CAS  Google Scholar 

  47. Rabinowitz, J.D. et al. Formation of a highly peptide-receptive state of class II MHC. Immunity 9, 699–709 (1998).

    Article  CAS  Google Scholar 

  48. Stern, L.J. & Wiley, D.C. The human class II MHC protein HLA-DR1 assembles as empty αβ heterodimers in the absence of antigenic peptide. Cell 68, 465–477 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.J. Stern and E.D. Mellins for discussions; K. Su for help with the experimental setup, C.-H. (Bear) Huang for help with modeling; and Erika Darrah for critical reading of the manuscript. P. Roche (National Cancer Institute) donated cDNA constructs for the HLA-DM α-and β-chains. K.N. dedicates dedicate this work to the memory of Varun Shankar, who passed away during the preparation of this manuscript. Supported by the National Institutes of Health (R01AI063764 and R01GM53549 to S.S.-N.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scheherazade Sadegh-Nasseri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Size separation profiles of double mutant DR1 proteins are identical to DR1WT and DR1βH81N. (PDF 306 kb)

Supplementary Fig. 2

SDS stability of the double mutant DR1 proteins. (PDF 274 kb)

Supplementary Fig. 3

Both DR1(βH81N βV85H) and DR1(βH81N βN82H) dissociate from HA(anchorless) rapidly in an SPR experiment. (PDF 152 kb)

Supplementary Fig. 4

Model of DM-mediated peptide dissociation and epitope selection in the antigen-presenting cell. (PDF 230 kb)

Supplementary Note (PDF 51 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Narayan, K., Chou, CL., Kim, A. et al. HLA-DM targets the hydrogen bond between the histidine at position β81 and peptide to dissociate HLA-DR–peptide complexes. Nat Immunol 8, 92–100 (2007). https://doi.org/10.1038/ni1414

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1414

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing