Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells

Abstract

Relapses and disease exacerbations are vexing features of multiple sclerosis. Osteopontin (Opn), which is expressed in multiple sclerosis lesions, is increased in patients’ plasma during relapses. Here, in models of multiple sclerosis including relapsing, progressive and multifocal experimental autoimmune encephalomyelitis (EAE), Opn triggered recurrent relapses, promoted worsening paralysis and induced neurological deficits, including optic neuritis. Increased inflammation followed Opn administration, whereas its absence resulted in more cell death of brain-infiltrating lymphocytes. Opn promoted the survival of activated T cells by inhibiting the transcription factor Foxo3a, by activating the transcription factor NF-κB through induction of phosphorylation of the kinase IKKβ and by altering expression of the proapoptotic proteins Bim, Bak and Bax. Those mechanisms collectively suppressed the death of myelin-reactive T cells, linking Opn to the relapses and insidious progression characterizing multiple sclerosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Opn induces worsening autoimmune relapses and severe progression of autoimmune demyelinating disease.
Figure 2: Opn inhibits cell death but does not affect cell division.
Figure 3: Opn regulates the activation of Foxo3a and NF-κB and expression of Bim, Bak and Bax.
Figure 4: Mode of cell death inhibited by Opn in T cell.
Figure 5: Opn promotes the survival of adoptively transferred T cells in vivo.

Similar content being viewed by others

References

  1. National Institutes of Health Autoimmune Disease Coordinating Committee Report (The National Institutes of Health, Bethesda, Maryland 2002).

  2. Denhardt, D.T., Noda, M., O'Regan, A.W., Pavlin, D. & Berman, J.S. Osteopontin as a means to cope with environmental insults: regulation of inflammation, tissue remodeling, and cell survival. J. Clin. Invest. 107, 1055–1061 (2001).

    Article  CAS  Google Scholar 

  3. Shinohara, M.L. et al. Osteopontin expression is essential for interferon-α production by plasmacytoid dendritic cells. Nat. Immunol. 7, 498–506 (2006).

    Article  CAS  Google Scholar 

  4. Chabas, D. et al. The influence of the proinflammatory cytokine, osteopontin, on autoimmune demyelinating disease. Science 294, 1731–1735 (2001).

    Article  CAS  Google Scholar 

  5. Comabella, M. et al. Plasma osteopontin levels in multiple sclerosis. J. Neuroimmunol. 158, 231–239 (2005).

    Article  CAS  Google Scholar 

  6. Wong, C.K., Lit, L.C., Tam, L.S., Li, E.K. & Lam, C.W. Elevation of plasma osteopontin concentration is correlated with disease activity in patients with systemic lupus erythematosus. Rheumatology (Oxford) 44, 602–606 (2005).

    Article  CAS  Google Scholar 

  7. Lampe, M.A., Patarca, R., Iregui, M.V. & Cantor, H. Polyclonal B cell activation by the Eta-1 cytokine and the development of systemic autoimmune disease. J. Immunol. 147, 2902–2906 (1991).

    CAS  PubMed  Google Scholar 

  8. Xu, G. et al. Role of osteopontin in amplification and perpetuation of rheumatoid synovitis. J. Clin. Invest. 115, 1060–1067 (2005).

    Article  CAS  Google Scholar 

  9. Chiocchetti, A. et al. High levels of osteopontin associated with polymorphisms in its gene are a risk factor for development of autoimmunity/lymphoproliferation. Blood 103, 1376–1382 (2004).

    Article  CAS  Google Scholar 

  10. Sato, T. et al. Osteopontin/Eta-1 upregulated in Crohn's disease regulates the Th1 immune response. Gut 54, 1254–1262 (2005).

    Article  CAS  Google Scholar 

  11. Jansson, M., Panoutsakopoulou, V., Baker, J., Klein, L. & Cantor, H. Cutting edge: Attenuated experimental autoimmune encephalomyelitis in eta-1/osteopontin-deficient mice. J. Immunol. 168, 2096–2099 (2002).

    Article  CAS  Google Scholar 

  12. Vogt, M.H. et al. Osteopontin levels and increased disease activity in relapsing-remitting multiple sclerosis patients. J. Neuroimmunol. 155, 155–160 (2004).

    Article  CAS  Google Scholar 

  13. Ashkar, S. et al. Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287, 860–864 (2000).

    Article  CAS  Google Scholar 

  14. O'Regan, A.W., Nau, G.J., Chupp, G.L. & Berman, J.S. Osteopontin (Eta-1) in cell-mediated immunity: teaching an old dog new tricks. Immunol. Today 21, 475–478 (2000).

    Article  CAS  Google Scholar 

  15. Shinohara, M.L. et al. T-bet-dependent expression of osteopontin contributes to T cell polarization. Proc. Natl. Acad. Sci. USA 102, 17101–17106 (2005).

    Article  CAS  Google Scholar 

  16. Scatena, M. et al. NF-κB mediates αvβ3 integrin-induced endothelial cell survival. J. Cell Biol. 141, 1083–1093 (1998).

    Article  CAS  Google Scholar 

  17. Lin, Y.H. et al. Coupling of osteopontin and its cell surface receptor CD44 to the cell survival response elicited by interleukin-3 or granulocyte-macrophage colony-stimulating factor. Mol. Cell. Biol. 20, 2734–2742 (2000).

    Article  CAS  Google Scholar 

  18. Walker, L.S. & Abbas, A.K. The enemy within: keeping self-reactive T cells at bay in the periphery. Nat. Rev. Immunol. 2, 11–19 (2002).

    Article  CAS  Google Scholar 

  19. Pender, M.P., Nguyen, K.B., McCombe, P.A. & Kerr, J.F. Apoptosis in the nervous system in experimental allergic encephalomyelitis. J. Neurol. Sci. 104, 81–87 (1991).

    Article  CAS  Google Scholar 

  20. Gold, R., Hartung, H.P. & Lassmann, H. T-cell apoptosis in autoimmune diseases: termination of inflammation in the nervous system and other sites with specialized immune-defense mechanisms. Trends Neurosci. 20, 399–404 (1997).

    Article  CAS  Google Scholar 

  21. Tabi, Z., McCombe, P.A. & Pender, M.P. Apoptotic elimination of Vβ8.2+ cells from the central nervous system during recovery from experimental autoimmune encephalomyelitis induced by the passive transfer of Vβ8.2+ encephalitogenic T cells. Eur. J. Immunol. 24, 2609–2617 (1994).

    Article  CAS  Google Scholar 

  22. Steinman, L. Multiple sclerosis: a two-stage disease. Nat. Immunol. 2, 762–764 (2001).

    Article  CAS  Google Scholar 

  23. Bettelli, E. et al. Myelin oligodendrocyte glycoprotein-specific T cell receptor transgenic mice develop spontaneous autoimmune optic neuritis. J. Exp. Med. 197, 1073–1081 (2003).

    Article  CAS  Google Scholar 

  24. Das, R., Mahabeleshwar, G.H. & Kundu, G.C. Osteopontin stimulates cell motility and nuclear factor κB-mediated secretion of urokinase type plasminogen activator through phosphatidylinositol 3-kinase/Akt signaling pathways in breast cancer cells. J. Biol. Chem. 278, 28593–28606 (2003).

    Article  CAS  Google Scholar 

  25. Lin, Y.H. & Yang-Yen, H.F. The osteopontin-CD44 survival signal involves activation of the phosphatidylinositol 3-kinase/Akt signaling pathway. J. Biol. Chem. 276, 46024–46030 (2001).

    Article  CAS  Google Scholar 

  26. Brunet, A. et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857–868 (1999).

    Article  CAS  Google Scholar 

  27. Medema, R.H., Kops, G.J., Bos, J.L. & Burgering, B.M. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature 404, 782–787 (2000).

    Article  CAS  Google Scholar 

  28. Hu, M.C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225–237 (2004).

    Article  CAS  Google Scholar 

  29. Essafi, A. et al. Direct transcriptional regulation of Bim by FoxO3a mediates STI571-induced apoptosis in Bcr-Abl-expressing cells. Oncogene 24, 2317–2329 (2005).

    Article  CAS  Google Scholar 

  30. Hoffmann, A. & Baltimore, D. Circuitry of nuclear factor κB signaling. Immunol. Rev. 210, 171–186 (2006).

    Article  Google Scholar 

  31. Strasser, A. & Pellegrini, M. T-lymphocyte death during shutdown of an immune response. Trends Immunol. 25, 610–615 (2004).

    Article  CAS  Google Scholar 

  32. Cheng, E.H. et al. BCL-2, BCL-X(L) sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).

    Article  CAS  Google Scholar 

  33. Marrack, P. & Kappler, J. Control of T cell viability. Annu. Rev. Immunol. 22, 765–787 (2004).

    Article  CAS  Google Scholar 

  34. Susin, S.A. et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397, 441–446 (1999).

    Article  CAS  Google Scholar 

  35. Lakhani, S.A. et al. Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311, 847–851 (2006).

    Article  CAS  Google Scholar 

  36. Munoz-Pinedo, C. et al. Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc. Natl. Acad. Sci. USA 103, 11573–11578 (2006).

    Article  CAS  Google Scholar 

  37. Lipton, S.A. & Bossy-Wetzel, E. Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell 111, 147–150 (2002).

    Article  CAS  Google Scholar 

  38. Steinman, L., Martin, R., Bernard, C., Conlon, P. & Oksenberg, J.R. Multiple sclerosis: deeper understanding of its pathogenesis reveals new targets for therapy. Annu. Rev. Neurosci. 25, 491–505 (2002).

    Article  CAS  Google Scholar 

  39. Brocke, S. et al. Induction of relapsing paralysis in experimental autoimmune encephalomyelitis by bacterial superantigen. Nature 365, 642–644 (1993).

    Article  CAS  Google Scholar 

  40. Yu, M., Johnson, J.M. & Tuohy, V.K. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: a basis for peptide-specific therapy after onset of clinical disease. J. Exp. Med. 183, 1777–1788 (1996).

    Article  CAS  Google Scholar 

  41. Smith, P.A. et al. Epitope spread is not critical for the relapse and progression of MOG 8–21 induced EAE in Biozzi ABH mice. J. Neuroimmunol. 164, 76–84 (2005).

    Article  CAS  Google Scholar 

  42. Skundric, D.S. et al. Distinct immune regulation of the response to H-2b restricted epitope of MOG causes relapsing-remitting EAE in H-2b/s mice. J. Neuroimmunol. 136, 34–45 (2003).

    Article  CAS  Google Scholar 

  43. Screaton, G. & Xu, X.N. T cell life and death signalling via TNF-receptor family members. Curr. Opin. Immunol. 12, 316–322 (2000).

    Article  CAS  Google Scholar 

  44. Letterio, J.J. TGF-β signaling in T cells: roles in lymphoid and epithelial neoplasia. Oncogene 24, 5701–5712 (2005).

    Article  CAS  Google Scholar 

  45. Yu, X.Q. et al. IL-1 up-regulates osteopontin expression in experimental crescentic glomerulonephritis in the rat. Am. J. Pathol. 154, 833–841 (1999).

    Article  CAS  Google Scholar 

  46. Palmer, E.M., Farrokh-Siar, L., Maguire van Seventer, J. & van Seventer, G.A. IL-12 decreases activation-induced cell death in human naive Th cells costimulated by intercellular adhesion molecule-1. I. IL-12 alters caspase processing and inhibits enzyme function. J. Immunol. 167, 749–758 (2001).

    Article  CAS  Google Scholar 

  47. Han, J. et al. Differential involvement of Bax and Bak in TRAIL-mediated apoptosis of leukemic T cells. Leukemia 18, 1671–1680 (2004).

    Article  CAS  Google Scholar 

  48. Adler, B., Ashkar, S., Cantor, H. & Weber, G.F. Costimulation by extracellular matrix proteins determines the response to TCR ligation. Cell. Immunol. 210, 30–40 (2001).

    Article  CAS  Google Scholar 

  49. Wittig, B.M., Johansson, B., Zoller, M., Schwarzler, C. & Gunthert, U. Abrogation of experimental colitis correlates with increased apoptosis in mice deficient for CD44 variant exon 7 (CD44v7). J. Exp. Med. 191, 2053–2064 (2000).

    Article  CAS  Google Scholar 

  50. Youssef, S. et al. The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420, 78–84 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G.R. Crabtree, P.P. Jones, P.J. Utz, T.W. Mak (University of Toronto) and D.R. Green (St. Jude Children's Research Hospital) for discussions; J.H. Kim, M.J. Eaton and C.K. Chung for technical assistance; C.J. Shabrami and M.M. Winslow for critical review of the manuscript; S. Rittling and D.T. Denhardt (Rutgers University) for Opn-knockout mice; and V. Kuchroo (Harvard University) for 2D2 mice. Supported by the National Health Institutes, the National Multiple Sclerosis Society, the Phil N. Allen Trust, a Stanford Graduate Fellowship (E.M.H.), a Korean Government Overseas Scholarship (E.M.H.) and a National Multiple Sclerosis Society Career Transitional Award (S.Y.).

Author information

Authors and Affiliations

Authors

Contributions

E.M.H. and S.Y. designed and did the experiments and prepared the manuscript; M.E.H. assisted with cell fractionation; S.Y.Z. assisted in assigning scores to mice with EAE; R.A.S. contributed to histology; and L.S. supervised all studies and preparation of the manuscript.

Corresponding author

Correspondence to Lawrence Steinman.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Autoimmune optic neuritis induced by OPN in MOG-specific TCR transgenic mice with EAE. (PDF 2949 kb)

Supplementary Fig. 2

Residual LPS in purified OPN does not affect clinical score of EAE. (PDF 410 kb)

Supplementary Fig. 3

Increased T cell proliferation by OPN. (PDF 234 kb)

Supplementary Fig. 4

The time course expression of Bim, Bak and Bax after T cell activation in vitro. (PDF 1562 kb)

Supplementary Fig. 5

OPN does not affect Fas-induced cell death. (PDF 252 kb)

Supplementary Fig. 6

OPN inhibits nuclear translocation of AIF. (PDF 1623 kb)

Supplementary Fig. 7

Schematic diagram of OPN-induced survival of T cell. (PDF 581 kb)

Supplementary Fig. 8

Schematic diagram of the suggested model for autoimmune relapse. (PDF 778 kb)

Supplementary Table 1

EAE induced in OPN-KO and OPN-WT mice. (PDF 59 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hur, E., Youssef, S., Haws, M. et al. Osteopontin-induced relapse and progression of autoimmune brain disease through enhanced survival of activated T cells. Nat Immunol 8, 74–83 (2007). https://doi.org/10.1038/ni1415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1415

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing