Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ TH-17 cells in relapsing EAE

Abstract

Peripherally derived CD11b+ myeloid dendritic cells (mDCs), plasmacytoid DCs, CD8α+ DCs and macrophages accumulate in the central nervous system during relapsing experimental autoimmune encephalomyelitis (EAE). During acute relapsing EAE induced by a proteolipid protein peptide of amino acids 178–191, transgenic T cells (139TCR cells) specific for the relapse epitope consisting of proteolipid protein peptide amino acids 139–151 clustered with mDCs in the central nervous system, were activated and differentiated into T helper cells producing interleukin 17 (TH-17 cells). CNS mDCs presented endogenously acquired peptide, driving the proliferation of and production of interleukin 17 by naive 139TCR cells in vitro and in vivo. The mDCs uniquely biased TH-17 and not TH1 differentiation, correlating with their enhanced expression of transforming growth factor-β1 and interleukins 6 and 23. Plasmacytoid DCs and CD8α+ DCs were superior to macrophages but were much less efficient than mDCs in presenting endogenous peptide to induce TH-17 cells. Our findings indicate a critical function for CNS mDCs in driving relapses in relapsing EAE.

This is a preview of subscription content, access via your institution

Access options

Figure 1: CNS DCs are of peripheral origin.
Figure 2: Differential localization of DC subsets to demyelinated areas during peak acute relapsing EAE, and clustering of mDCs with Thy-1.1+CD4+ T cells specific for relapse-associated epitopes.
Figure 3: Differential ability of CNS DC subpopulations to present endogenous and exogenous myelin peptide for the activation of naive and activated CD4+ T cells specific for spreading epitopes.
Figure 4: CNS mDCs induce a TH-17 inflammatory cytokine profile in naive CD4+ PLP(139–151)-specific T cells both in vitro and in the CNS.
Figure 5: CNS mDCs express TGF-β1 and produce IL-23 and high concentrations of IL-6 after CD40 activation.

Similar content being viewed by others

References

  1. Vanderlugt, C.L. & Miller, S.D. Epitope spreading in immune-mediated diseases: implications for immunotherapy. Nat. Rev. Immunol. 2, 85–95 (2002).

    Article  CAS  Google Scholar 

  2. Tuohy, V.K., Yu, M., Yin, L., Kawczak, J.A. & Kinkel, R.P. Spontaneous regression of primary autoreactivity during chronic progression of experimental autoimmune encephalomyelitis and multiple sclerosis. J. Exp. Med. 189, 1033–1042 (1999).

    Article  CAS  Google Scholar 

  3. Lehmann, P.V., Forsthuber, T., Miller, A. & Sercarz, E.E. Spreading of T-cell autoimmunity to cryptic determinants of an autoantigen. Nature 358, 155–157 (1992).

    Article  CAS  Google Scholar 

  4. McRae, B.L., Vanderlugt, C.L., Dal Canto, M.C. & Miller, S.D. Functional evidence for epitope spreading in the relapsing pathology of experimental autoimmune encephalomyelitis. J. Exp. Med. 182, 75–85 (1995).

    Article  CAS  Google Scholar 

  5. Vanderlugt, C.L. et al. Pathologic role and temporal appearance of newly emerging autoepitopes in relapsing experimental autoimmune encephalomyelitis. J. Immunol. 164, 670–678 (2000).

    Article  CAS  Google Scholar 

  6. Yu, M., Johnson, J.M. & Tuohy, V.K. A predictable sequential determinant spreading cascade invariably accompanies progression of experimental autoimmune encephalomyelitis: A basis for peptide-specific therapy after onset of clinical disease. J. Exp. Med. 183, 1777–1788 (1996).

    Article  CAS  Google Scholar 

  7. Miller, S.D. et al. Persistent infection with Theiler's virus leads to CNS autoimmunity via epitope spreading. Nat. Med. 3, 1133–1136 (1997).

    Article  CAS  Google Scholar 

  8. Katz-Levy, Y. et al. Temporal development of autoreactive Th1 responses and endogenous antigen presentation of self myelin epitopes by CNS-resident APCs in Theiler's virus-infected mice. J. Immunol. 165, 5304–5314 (2000).

    Article  CAS  Google Scholar 

  9. Neville, K.L., Padilla, J. & Miller, S.D. Myelin-specific tolerance attenuates the progression of a virus-induced demyelinating disease: Implications for the treatment of MS. J. Neuroimmunol. 123, 18–29 (2002).

    Article  CAS  Google Scholar 

  10. Hohlfeld, R. & Wekerle, H. Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc. Natl. Acad. Sci. USA 101, 14599–14606 (2004).

    Article  CAS  Google Scholar 

  11. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  Google Scholar 

  12. Chen, Y. et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J. Clin. Invest. 116, 1317–1326 (2006).

    Article  CAS  Google Scholar 

  13. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  14. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    Article  CAS  Google Scholar 

  15. Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    Article  CAS  Google Scholar 

  16. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  Google Scholar 

  17. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  Google Scholar 

  18. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  Google Scholar 

  19. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  Google Scholar 

  20. Veldhoen, M., Hocking, R.J., Flavell, R.A. & Stockinger, B. Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat. Immunol. 7, 1151–1156 (2006).

    Article  CAS  Google Scholar 

  21. Bailey, S.L., Carpentier, P.A., McMahon, E.J., Begolka, W.S. & Miller, S.D. Innate and adaptive immune responses of the central nervous system. Crit. Rev. Immunol. 26, 149–188 (2006).

    Article  CAS  Google Scholar 

  22. Tompkins, S.M. et al. De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J. Immunol. 168, 4173–4183 (2002).

    Article  CAS  Google Scholar 

  23. Kawakami, N. et al. The activation status of neuroantigen-specific T cells in the target organ determines the clinical outcome of autoimmune encephalomyelitis. J. Exp. Med. 199, 185–197 (2004).

    Article  CAS  Google Scholar 

  24. Archambault, A.S., Sim, J., Gimenez, M.A. & Russell, J.H. Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. Eur. J. Immunol. 35, 1076–1085 (2005).

    Article  CAS  Google Scholar 

  25. Greter, M. et al. Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat. Med. 11, 328–334 (2005).

    Article  CAS  Google Scholar 

  26. Matyszak, M.K. & Perry, V.H. The potential role of dendritic cells in immune-mediated inflammatory diseases in the central nervous system. Neuroscience 74, 599–608 (1996).

    Article  CAS  Google Scholar 

  27. Serot, J.M., Foliguet, B., Bene, M.C. & Faure, G.C. Ultrastructural and immunohistological evidence for dendritic-like cells within human choroid plexus epithelium. Neuroreport 8, 1995–1998 (1997).

    Article  CAS  Google Scholar 

  28. Hanly, A. & Petito, C.K. HLA-DR-positive dendritic cells of the normal human choroid plexus: a potential reservoir of HIV in the central nervous system. Hum. Pathol. 29, 88–93 (1998).

    Article  CAS  Google Scholar 

  29. McMenamin, P.G. Distribution and phenotype of dendritic cells and resident tissue macrophages in the dura mater, leptomeninges, and choroid plexus of the rat brain as demonstrated in wholemount preparations. J. Comp. Neurol. 405, 553–562 (1999).

    Article  CAS  Google Scholar 

  30. Suter, T. et al. The brain as an immune privileged site: dendritic cells of the central nervous system inhibit T cell activation. Eur. J. Immunol. 33, 2998–3006 (2003).

    Article  CAS  Google Scholar 

  31. McMahon, E.J., Bailey, S.L., Castenada, C.V., Waldner, H. & Miller, S.D. Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat. Med. 11, 335–339 (2005).

    Article  CAS  Google Scholar 

  32. Newman, T.A., Galea, I., van Rooijen, N. & Perry, V.H. Blood-derived dendritic cells in an acute brain injury. J. Neuroimmunol. 166, 167–172 (2005).

    Article  CAS  Google Scholar 

  33. Fischer, H.G. & Bielinsky, A.K. Antigen presentation function of brain-derived dendriform cells depends on astrocyte help. Int. Immunol. 11, 1265–1274 (1999).

    Article  CAS  Google Scholar 

  34. Santambrogio, L. et al. Developmental plasticity of CNS microglia. Proc. Natl. Acad. Sci. USA 98, 6295–6300 (2001).

    Article  CAS  Google Scholar 

  35. Hickey, W.F. & Kimura, H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239, 290–292 (1988).

    Article  CAS  Google Scholar 

  36. Greenwald, R.J., Freeman, G.J. & Sharpe, A.H. The B7 family revisited. Annu. Rev. Immunol. 23, 515–548 (2005).

    Article  Google Scholar 

  37. McMahon, E.J., Bailey, S.L. & Miller, S.D. CNS dendritic cells: critical participants in CNS inflammation. Neurochem. Int. 49, 195–203 (2006).

    Article  CAS  Google Scholar 

  38. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  Google Scholar 

  39. Antonysamy, M.A. et al. Evidence for a role of IL-17 in organ allograft rejection: IL-17 promotes the functional differentiation of dendritic cell progenitors. J. Immunol. 162, 577–584 (1999).

    CAS  PubMed  Google Scholar 

  40. Shortman, K. & Liu, Y.J. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2, 151–161 (2002).

    Article  CAS  Google Scholar 

  41. Maldonado-Lopez, R. et al. CD8α+ and CD8 α subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J. Exp. Med. 189, 587–592 (1999).

    Article  CAS  Google Scholar 

  42. Gutcher, I. et al. Interleukin 18–independent engagement of interleukin 18 receptor-α is required for autoimmune inflammation. Nat. Immunol. 7, 946–953 (2006).

    Article  CAS  Google Scholar 

  43. Plumb, J., Armstrong, M.A., Duddy, M., Mirakhur, M. & McQuaid, S. CD83-positive dendritic cells are present in occasional perivascular cuffs in multiple sclerosis lesions. Mult. Scler. 9, 142–147 (2003).

    Article  CAS  Google Scholar 

  44. Serafini, B. et al. Dendritic cells in multiple sclerosis lesions: maturation stage, myelin uptake, and interaction with proliferating T cells. J. Neuropathol. Exp. Neurol. 65, 124–141 (2006).

    Article  CAS  Google Scholar 

  45. Nestle, F.O. et al. Plasmacytoid predendritic cells initiate psoriasis through interferon-alpha production. J. Exp. Med. 202, 135–143 (2005).

    Article  CAS  Google Scholar 

  46. Jongbloed, S.L. et al. Enumeration and phenotypical analysis of distinct dendritic cell subsets in psoriatic arthritis and rheumatoid arthritis. Arthritis Res. Ther. 8, R15 (2006).

    Article  Google Scholar 

  47. Farkas, L., Beiske, K., Lund-Johansen, F., Brandtzaeg, P. & Jahnsen, F.L. Plasmacytoid dendritic cells (natural interferon-α/β-producing cells) accumulate in cutaneous lupus erythematosus lesions. Am. J. Pathol. 159, 237–243 (2001).

    Article  CAS  Google Scholar 

  48. Ludewig, B., Odermatt, B., Landmann, S., Hengartner, H. & Zinkernagel, R.M. Dendritic cells induce autoimmune diabetes and maintain disease via de novo formation of local lymphoid tissue. J. Exp. Med. 188, 1493–1501 (1998).

    Article  CAS  Google Scholar 

  49. Drayton, D.L., Ying, X., Lee, J., Lesslauer, W. & Ruddle, N.H. Ectopic LT αβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med. 197, 1153–1163 (2003).

    Article  CAS  Google Scholar 

  50. Magliozzi, R., Columba-Cabezas, S., Serafini, B. & Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 148, 11–23 (2004).

    Article  CAS  Google Scholar 

  51. Yoneyama, H. et al. Evidence for recruitment of plasmacytoid dendritic cell precursors to inflamed lymph nodes through high endothelial venules. Int. Immunol. 16, 915–928 (2004).

    Article  CAS  Google Scholar 

  52. Vecchi, A. et al. Differential responsiveness to constitutive vs. inducible chemokines of immature and mature mouse dendritic cells. J. Leukoc. Biol. 66, 489–494 (1999).

    Article  CAS  Google Scholar 

  53. Pashenkov, M. et al. Two subsets of dendritic cells are present in human cerebrospinal fluid. Brain 124, 480–492 (2001).

    Article  CAS  Google Scholar 

  54. Huang, Y.M. et al. Multiple sclerosis is associated with high levels of circulating dendritic cells secreting pro-inflammatory cytokines. J. Neuroimmunol. 99, 82–90 (1999).

    Article  CAS  Google Scholar 

  55. El Behi, M. et al. New insights into cell responses involved in experimental autoimmune encephalomyelitis and multiple sclerosis. Immunol. Lett. 96, 11–26 (2005).

    Article  CAS  Google Scholar 

  56. Sanna, A. et al. Glatiramer acetate reduces lymphocyte proliferation and enhances IL-5 and IL-13 production through modulation of monocyte-derived dendritic cells in multiple sclerosis. Clin. Exp. Immunol. 143, 357–362 (2006).

    Article  CAS  Google Scholar 

  57. Stasiolek, M. et al. Impaired maturation and altered regulatory function of plasmacytoid dendritic cells in multiple sclerosis. Brain 129, 1293–1305 (2006).

    Article  Google Scholar 

  58. Lopez, C., Comabella, M., Al-Zayat, H., Tintore, M. & Montalban, X. Altered maturation of circulating dendritic cells in primary progressive MS patients. J. Neuroimmunol. 175, 183–191 (2006).

    Article  CAS  Google Scholar 

  59. Ochando, J.C. et al. Alloantigen-presenting plasmacytoid dendritic cells mediate tolerance to vascularized grafts. Nat. Immunol. 7, 652–662 (2006).

    Article  CAS  Google Scholar 

  60. Waldner, H., Whitters, M.J., Sobel, R.A., Collins, M. & Kuchroo, V.K. Fulminant spontaneous autoimmunity of the central nervous system in mice transgenic for the myelin proteolipid protein-specific T cell receptor. Proc. Natl. Acad. Sci. USA 97, 3412–3417 (2000).

    Article  CAS  Google Scholar 

  61. Begolka, W.S., Vanderlugt, C.L., Rahbe, S.M. & Miller, S.D. Differential expression of inflammatory cytokines parallels progression of central nervous system pathology in two clinically distinct models of multiple sclerosis. J. Immunol. 161, 4437–4446 (1998).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank A. Dzionek (Miltenyi Biotec) for providing anti-PDCA-1; J. Marvin (Northwestern University) for cell sorting; M. Degutes for technical assistance; and colleagues at the Myelin Repair Foundation for discussions. Supported by the National Institutes of Health (NS-30871 and NS-26543; and AI-07476 to E.J.M.), the National Multiple Sclerosis Society (RG 3793-A-7; and FG 1563 A-1 to S.L.B.), the Myelin Repair Foundation, and Deutsche Forschungsgemeinschaft (B.S.).

Author information

Authors and Affiliations

Authors

Contributions

S.L.B. did most of the experiments; B.S. did the intracellular cytokine staining of 139TCR cells recovered from the CNS and helped with purification and phenotypic analysis of the CNS APC subsets; E.J.M. assisted with the immunohistochemistry; and S.D.M. provided intellectual input, secured the funding and guided the preparation of the manuscript.

Corresponding author

Correspondence to Stephen D Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Dendritic cells accumulate in the CNS of mice during relapsing EAE. (PDF 335 kb)

Supplementary Fig. 2

DC subsets and macrophages internalize myelin debris in the inflamed CNS. (PDF 271 kb)

Supplementary Fig. 3

MHC II and accessory molecule expression by DC subsets in the inflamed CNS. (PDF 239 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bailey, S., Schreiner, B., McMahon, E. et al. CNS myeloid DCs presenting endogenous myelin peptides 'preferentially' polarize CD4+ TH-17 cells in relapsing EAE. Nat Immunol 8, 172–180 (2007). https://doi.org/10.1038/ni1430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1430

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing