Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes

Abstract

The molecular basis underlying the specificity of alloreactive T cells for peptide–major histocompatibility complex ligands has been elusive. Here we describe a screen of 60 I-Ek-alloreactive T cells and 83 naturally processed peptides that identified 9 reactive T cells. Three of the T cells responded to multiple, distinct peptides that shared no sequence homology. These T cells recognized each peptide–major histocompatibility complex ligand specifically and used a distinct constellation of I-Ek contact residues for each interaction. Our studies show that alloreactive T cells have a 'germline-encoded' capacity to recognize multiple, distinct ligands and thus show 'polyspecificity', not degeneracy. Our findings help to explain the high frequency of alloreactive T cells and provide insight into the nature of T cell specificity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Alloreactive T cells specific for I-Ek can be divided into two categories based on their response to CHO-Ek APCs.
Figure 2: Identification of 9 alloreactive T cells and 12 allostimulatory peptides.
Figure 3: Alloreactive T cells respond to their respective peptides in a typical dose-dependent way.
Figure 4: Alloreactive T cells can recognize multiple unrelated allopeptides in a very specific way.
Figure 5: Alloreactive T cells that respond to multiple peptides accommodate distinct peptides by interacting with different MHC residues.
Figure 6: Alloreactive T cells have different requirements for CD4 that depend on the sensitivity of the T cell for the peptide.
Figure 7: CHO-Ek-reactive alloreactive T cells have a degree of peptide specificity.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Sherman, L.A. & Chattopadhyay, S. The molecular basis of allorecognition. Annu. Rev. Immunol. 11, 385–402 (1993).

    Article  CAS  Google Scholar 

  2. Csencsits, K.L. & Bishop, D.K. Contrasting alloreactive CD4+ and CD8+ T Cells: There's more to it than MHC restriction. Am. J. Transplant. 3, 107–115 (2003).

    Article  CAS  Google Scholar 

  3. Suchin, E.J. et al. Quantifying the frequency of alloreactive T cells in vivo: new answers to an old question. J. Immunol. 166, 973–981 (2001).

    Article  CAS  Google Scholar 

  4. Crumpacker, D.B., Alexander, J., Cresswell, P. & Engelhard, V.H. Role of endogenous peptides in murine allogenic cytotoxic T cell responses assessed using transfectants of the antigen-processing mutant 174xCEM.T2. J. Immunol. 148, 3004–3011 (1992).

    CAS  PubMed  Google Scholar 

  5. Demotz, S. et al. Self peptide requirement for class II major histocompatibility complex allorecognition. Proc. Natl. Acad. Sci. USA 88, 8730–8734 (1991).

    Article  CAS  Google Scholar 

  6. Guimezanes, A. et al. Identification of endogenous peptides recognized by in vivo or in vitro generated alloreactive cytotoxic T lymphocytes: distinct characteristics correlated with CD8 dependence. Eur. J. Immunol. 31, 421–432 (2001).

    Article  CAS  Google Scholar 

  7. Heath, W.R., Kane, K.P., Mescher, M.F. & Sherman, L.A. Alloreactive T cells discriminate among a diverse set of endogenous peptides. Proc. Natl. Acad. Sci. USA 88, 5101–5105 (1991).

    Article  CAS  Google Scholar 

  8. Heath, W.R. & Sherman, L.A. Cell-type-specific recognition of allogeneic cells by alloreactive cytotoxic T cells: a consequence of peptide-dependent allorecognition. Eur. J. Immunol. 21, 153–159 (1991).

    Article  CAS  Google Scholar 

  9. Hong, S.C. et al. The orientation of a T cell receptor to its MHC class II:peptide ligands. J. Immunol. 159, 4395–4402 (1997).

    CAS  PubMed  Google Scholar 

  10. Malarkannan, S., Afkarian, M. & Shastri, N. A rare cryptic translation product is presented by Kb major histocompatibility complex class I molecule to alloreactive T cells. J. Exp. Med. 182, 1739–1750 (1995).

    Article  CAS  Google Scholar 

  11. Matis, L.A., Sorger, S.B., McElligott, D.L., Fink, P.J. & Hedrick, S.M. The molecular basis of alloreactivity in antigen-specific, major histocompatibility complex-restricted T cell clones. Cell 51, 59–69 (1987).

    Article  CAS  Google Scholar 

  12. Mendiratta, S.K. et al. Peptide dependency of alloreactive CD4+ T cell responses. Int. Immunol. 11, 351–360 (1999).

    Article  CAS  Google Scholar 

  13. Obst, R., Munz, C., Stevanovic, S. & Rammensee, H.G. Allo- and self-restricted cytotoxic T lymphocytes against a peptide library: evidence for a functionally diverse allorestricted T cell repertoire. Eur. J. Immunol. 28, 2432–2443 (1998).

    Article  CAS  Google Scholar 

  14. Reinherz, E.L. et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).

    Article  CAS  Google Scholar 

  15. Sayegh, M.H. et al. Allograft rejection in a new allospecific CD4+ TCR transgenic mouse. Am. J. Transplant. 3, 381–389 (2003).

    Article  Google Scholar 

  16. Weber, D.A. et al. Requirement for peptide in alloreactive CD4+ T cell recognition of class II MHC molecules. J. Immunol. 154, 5153–5164 (1995).

    CAS  PubMed  Google Scholar 

  17. Basu, D., Horvath, S., Matsumoto, I., Fremont, D.H. & Allen, P.M. Molecular basis for recognition of an arthritic peptide and a foreign epitope on distinct MHC molecules by a single TCR. J. Immunol. 164, 5788–5796 (2000).

    Article  CAS  Google Scholar 

  18. Basu, D., Horvath, S., O'Mara, L., Donermeyer, D. & Allen, P.M. Two MHC surface amino acid differences distinguish foreign peptide recognition from autoantigen specificity. J. Immunol. 166, 4005–4011 (2001).

    Article  CAS  Google Scholar 

  19. Huseby, E.S., Crawford, F., White, J., Kappler, J. & Marrack, P. Negative selection imparts peptide specificity to the mature T cell repertoire. Proc. Natl. Acad. Sci. USA 100, 11565–11570 (2003).

    Article  CAS  Google Scholar 

  20. Panina-Bordignon, P., Corradin, G., Roosnek, E., Sette, A. & Lanzavecchia, A. Recognition by class II alloreactive T cells of processed determinants from human serum proteins. Science 252, 1548–1550 (1991).

    Article  CAS  Google Scholar 

  21. Alexander-Miller, M.A., Burke, K., Koszinowski, U.H., Hansen, T.H. & Connolly, J.M. Alloreactive cytotoxic T lymphocytes generated in the presence of viral-derived peptides show exquisite peptide and MHC specificity. J. Immunol. 151, 1–10 (1993).

    CAS  PubMed  Google Scholar 

  22. Reiser, J.B. et al. Crystal structure of a T cell receptor bound to an allogeneic MHC molecule. Nat. Immunol. 1, 291–297 (2000).

    Article  CAS  Google Scholar 

  23. Udaka, K., Tsomides, T.J. & Eisen, H.N. A naturally occurring peptide recognized by alloreactive CD8+ cytotoxic T lymphocytes in association with a class I MHC protein. Cell 69, 989–998 (1992).

    Article  CAS  Google Scholar 

  24. Eisen, H.N. Specificity and degeneracy in antigen recognition: yin and yang in the immune system. Annu. Rev. Immunol. 19, 1–21 (2001).

    Article  CAS  Google Scholar 

  25. Matzinger, P. & Bevan, M.J. Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens? Cell. Immunol. 29, 1–5 (1977).

    Article  CAS  Google Scholar 

  26. Wang, J. & Reinherz, E.L. Structural basis of cell-cell interactions in the immune system. Curr. Opin. Struct. Biol. 10, 656–661 (2000).

    Article  CAS  Google Scholar 

  27. Housset, D. & Malissen, B. What do TCR-pMHC crystal structures teach us about MHC restriction and alloreactivity? Trends Immunol. 24, 429–437 (2003).

    Article  CAS  Google Scholar 

  28. Suri, A. et al. In APCs, the autologous peptides selected by the diabetogenic I-Ag7 molecule are unique and determined by the amino acid changes in the P9 pocket. J. Immunol. 168, 1235–1243 (2002).

    Article  CAS  Google Scholar 

  29. Felix, N.J. et al. I-Ep-bound self-peptides: identification, characterization, and role in alloreactivity. J. Immunol. 176, 1062–1071 (2006).

    Article  CAS  Google Scholar 

  30. Altman, J.D., Reay, P.A. & Davis, M.M. Formation of functional peptide complexes of class II major histocompatibility complex proteins from subunits produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 90, 10330–10334 (1993).

    Article  CAS  Google Scholar 

  31. Marrack, P., Ignatowicz, L., Kappler, J.W., Boymel, J. & Freed, J.H. Comparison of peptides bound to spleen and thymus class II. J. Exp. Med. 178, 2173–2183 (1993).

    Article  CAS  Google Scholar 

  32. Ehrich, E.W. et al. T cell receptor interaction with peptide/major histocompatibility complex (MHC) and superantigen/MHC ligands is dominated by antigen. J. Exp. Med. 178, 713–722 (1993).

    Article  CAS  Google Scholar 

  33. Evavold, B.D., Williams, S.G., Hsu, B.L., Buus, S. & Allen, P.M. Complete dissection of the Hb(64–76) determinant using T helper 1, T helper 2 clones, and T cell hybridomas. J. Immunol. 148, 347–353 (1992).

    CAS  PubMed  Google Scholar 

  34. Fremont, D.H., Hendrickson, W.A., Marrack, P. & Kappler, J. Structures of an MHC class II molecule with covalently bound single peptides. Science 272, 1001–1004 (1996).

    Article  CAS  Google Scholar 

  35. Kersh, G.J. et al. Structural and functional consequences of altering a peptide MHC anchor residue. J. Immunol. 166, 3345–3354 (2001).

    Article  CAS  Google Scholar 

  36. Krogsgaard, M. et al. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434, 238–243 (2005).

    Article  CAS  Google Scholar 

  37. Daniel, C., Horvath, S. & Allen, P.M. A basis for alloreactivity: MHC helical residues broaden peptide recognition by the TCR. Immunity 8, 543–552 (1998).

    Article  CAS  Google Scholar 

  38. Schild, H. et al. Natural ligand motifs of H-2E molecules are allele specific and illustrate homology to HLA-DR molecules. Int. Immunol. 7, 1957–1965 (1995).

    Article  CAS  Google Scholar 

  39. Rudolph, M.G., Stanfield, R.L. & Wilson, I.A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    Article  CAS  Google Scholar 

  40. Reiser, J.B. et al. CDR3 loop flexibility contributes to the degeneracy of TCR recognition. Nat. Immunol. 4, 241–247 (2003).

    Article  CAS  Google Scholar 

  41. Huseby, E.S., Crawford, F., White, J., Marrack, P. & Kappler, J.W. Interface-disrupting amino acids establish specificity between T cell receptors and complexes of major histocompatibility complex and peptide. Nat. Immunol. 7, 1191–1199 (2006).

    Article  CAS  Google Scholar 

  42. Vidal, K., Daniel, C., Hill, M., Littman, D.R. & Allen, P.M. Differential requirements for CD4 in TCR-ligand interactions. J. Immunol. 163, 4811–4818 (1999).

    CAS  PubMed  Google Scholar 

  43. Masteller, E.L. et al. Peptide-MHC class II dimers as therapeutics to modulate antigen-specific T cell responses in autoimmune diabetes. J. Immunol. 171, 5587–5595 (2003).

    Article  CAS  Google Scholar 

  44. Jerne, N.K. The somatic generation of immune recognition. Eur. J. Immunol. 1, 1–9 (1971).

    Article  CAS  Google Scholar 

  45. Donermeyer, D.L., Weber, K.S., Kranz, D.M. & Allen, P.M. The study of high-affinity TCRs reveal duality in T cell recognition of antigen: specificity and degeneracy. J. Immunol. 177, 6911–6919 (2006).

    Article  CAS  Google Scholar 

  46. Marrack, P. et al. Major histocompatibility complex proteins and TCRs: do they really go together like a horse and carriage? J. Immunol. 167, 617–621 (2001).

    Article  CAS  Google Scholar 

  47. Obst, R., Netuschil, N., Klopfer, K., Stevanovic, S. & Rammensee, H.G. The role of peptides in T cell alloreactivity is determined by self-major histocompatibility complex molecules. J. Exp. Med. 191, 805–812 (2000).

    Article  CAS  Google Scholar 

  48. Luz, J.G. et al. Structural comparison of allogeneic and syngeneic T cell receptor-peptide-major histocompatibility complex complexes: a buried alloreactive mutation subtly alters peptide presentation substantially increasing Vβ interactions. J. Exp. Med. 195, 1175–1186 (2002).

    Article  CAS  Google Scholar 

  49. Bluestone, J.A., Kaliyaperumal, A., Jameson, S., Miller, S. & Dick, R., II. Peptide-induced changes in class I heavy chains alter allorecognition. J. Immunol. 151, 3943–3953 (1993).

    CAS  PubMed  Google Scholar 

  50. Baker, F.J., Lee, M., Chien, Y.-h. & Davis, M.M. Restricted islet-cell reactive T cell repertoire of early pancreatic islet infiltrates in NOD mice. Proc. Natl. Acad. Sci. USA 99, 9374–9379 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Davis for the I-Ek mutant CHO cell lines, D. Kreamalmeyer for maintenance of the mouse colony, J. Smith for assistance in the preparation of the manuscript, and T. Hansen, E. Unanue and S. Weber for critical review of the manuscript. Supported by the National Centers for Research Resources of the National Institutes of Health (2P41RR00954, for mass spectrometry measurements).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M Allen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Identification of allostimulatory peptide binding registers. (PDF 579 kb)

Supplementary Table 1

Naturally processed and presented I-Ek bound peptides. (PDF 73 kb)

Supplementary Table 2

Multiple peptide-reactive allo-T cells interact with different MHC residues for each allostimulatory peptide. (PDF 75 kb)

Supplementary Table 3

Priming mice prior to allostimulation does not bias the TCR repertoire. (PDF 66 kb)

Supplementary Methods (PDF 103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Felix, N., Donermeyer, D., Horvath, S. et al. Alloreactive T cells respond specifically to multiple distinct peptide-MHC complexes. Nat Immunol 8, 388–397 (2007). https://doi.org/10.1038/ni1446

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1446

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing