Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structural basis for the recognition of mutant self by a tumor-specific, MHC class II–restricted T cell receptor

Abstract

Structural studies of complexes of T cell receptor (TCR) and peptide–major histocompatibility complex (MHC) have focused on TCRs specific for foreign antigens or native self. An unexplored category of TCRs includes those specific for self determinants bearing alterations resulting from disease, notably cancer. We determined here the structure of a human melanoma–specific TCR (E8) bound to the MHC molecule HLA-DR1 and an epitope from mutant triosephosphate isomerase. The structure had features intermediate between 'anti-foreign' and autoimmune TCR–peptide–MHC class II complexes that may reflect the hybrid nature of altered self. E8 manifested very low affinity for mutant triosephosphate isomerase–HLA-DR1 despite the highly tumor-reactive properties of E8 cells. A second TCR (G4) had even lower affinity but underwent peptide-specific formation of dimers, suggesting this as a mechanism for enhancing low-affinity TCR-peptide-MHC interactions for T cell activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Recognition of wild-type and mutant TPI peptides by TIL1558 cells and by clones E8 and G4.
Figure 2: Binding of TCR E8 and G4 tetramers to wild-type TPI–DR1 and mutant TPI–DR1 complexes.
Figure 3: Structure of the E8–mutant TPI–DR1 complex and comparison with other TCR-peptide-MHC class II complexes.
Figure 4: Interactions of TCR E8 with TPI peptides and HLA-DR1.
Figure 5: Position of TCR CDR3 loops over foreign, tumor or self peptide antigens in TCR-peptide-DR complexes.
Figure 6: Conformational changes in TCR E8 and TPI-DR1 after complex formation.
Figure 7: Sedimentation-velocity analytical ultracentrifugation of linked G4-TPI-DR1 complexes, TCR G4 and mutant TPI–DR1.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

References

  1. Rosenberg, S.A. Progress in human tumour immunology and immunotherapy. Nature 411, 380–384 (2001).

    Article  CAS  Google Scholar 

  2. Houghton, A.N. & Guevara-Patino, J.A. Immune recognition of self in immunity against cancer. J. Clin. Invest. 114, 468–471 (2004).

    Article  CAS  Google Scholar 

  3. Wucherpfennig, K.W. & Strominger, J.L. Molecular mimicry in T-cell mediated autoimmunity: viral peptides activate human T cell clones specific for myelin basic protein. Cell 80, 695–705 (1995).

    Article  CAS  Google Scholar 

  4. Engelhorn, M.E. et al. Autoimmunity and tumor immunity induced by immune responses to mutations in self. Nat. Med. 12, 198–206 (2006).

    Article  CAS  Google Scholar 

  5. Rudolph, M.G., Stanfield, R.L. & Wilson, I.A. How TCRs bind MHCs, peptides, and coreceptors. Annu. Rev. Immunol. 24, 419–466 (2006).

    Article  CAS  Google Scholar 

  6. Nicholson, M.J., Hahn, M. & Wucherpfennig, K.W. Unusual features of self-peptide/MHC binding by autoimmune T cell receptors. Immunity 23, 351–360 (2005).

    Article  CAS  Google Scholar 

  7. Maynard, J. et al. Structure of an autoimmune T cell receptor complexed with class II peptide-MHC: insights into MHC bias and antigen specificity. Immunity 22, 81–92 (2005).

    CAS  PubMed  Google Scholar 

  8. Hahn, M., Nicholson, M.J., Pyrdol, J. & Wucherpfennig, K.W. Unconventional topology of self peptide-major histocompatibility complex binding by a human autoimmune T cell receptor. Nat. Immunol. 6, 490–496 (2005).

    Article  CAS  Google Scholar 

  9. Li, Y. et al. Structure of a human autoimmune TCR bound to a myelin basic protein self-peptide and a multiple sclerosis-associated MHC class II molecule. EMBO J. 24, 2968–2979 (2005).

    Article  CAS  Google Scholar 

  10. Pieper, R. et al. Biochemical identification of a mutated human melanoma antigen recognized by CD4+ T cells. J. Exp. Med. 189, 757–766 (1999).

    Article  CAS  Google Scholar 

  11. Sundberg, E.J. et al. Minor structural changes in a mutated human melanoma antigen correspond to dramatically enhanced stimulation of a CD4+ tumor-infiltrating lymphocyte line. J. Mol. Biol. 319, 449–461 (2002).

    Article  CAS  Google Scholar 

  12. Krogsgaard, M. et al. Agonist/endogenous peptide-MHC heterodimers drive T cell activation and sensitivity. Nature 434, 238–243 (2005).

    Article  CAS  Google Scholar 

  13. Cebecauer, M. et al. CD8+ cytotoxic T lymphocyte activation by soluble major histocompatibility complex-peptide dimers. J. Biol. Chem. 280, 23820–23828 (2005).

    Article  CAS  Google Scholar 

  14. van der Merwe, P.A. & Davis, S.J. Molecular interactions mediating T cell antigen recognition. Annu. Rev. Immunol. 21, 659–684 (2003).

    Article  CAS  Google Scholar 

  15. Hennecke, J., Carfi, A. & Wiley, D.C. Structure of a covalently stabilized complex of a human αβ T-cell receptor, influenza HA peptide and MHC class II molecule, HLA-DR1. EMBO J. 19, 5611–5624 (2000).

    Article  CAS  Google Scholar 

  16. Reinherz, E.L. et al. The crystal structure of a T cell receptor in complex with peptide and MHC class II. Science 286, 1913–1921 (1999).

    Article  CAS  Google Scholar 

  17. Lawrence, M.C. & Colman, P.M. Shape complementarity at protein-protein interfaces. J. Mol. Biol. 234, 946–950 (1993).

    Article  CAS  Google Scholar 

  18. Garcia, K.C. et al. Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. Science 279, 1166–1172 (1998).

    Article  CAS  Google Scholar 

  19. Kjer-Nielsen, L. et al. A structural basis for the selection of dominant αβ T cell receptors in antiviral immunity. Immunity 18, 53–64 (2003).

    Article  CAS  Google Scholar 

  20. Chen, J.-L. et al. Structural and kinetic basis for heightened immunogenicity of T cell vaccines. J. Exp. Med. 201, 1243–1255 (2005).

    Article  CAS  Google Scholar 

  21. Dam, J. et al. Variable MHC class I engagement by Ly49 natural killer cell receptors demonstrated by the crystal structure of Ly49C bound to H-2Kb. Nat. Immunol. 4, 1213–1222 (2003).

    Article  CAS  Google Scholar 

  22. Reich, Z. et al. Ligand-specific oligomerization of T-cell receptor molecules. Nature 387, 617–620 (1997).

    Article  CAS  Google Scholar 

  23. Alam, S.M. et al. Qualitative and quantitative differences in T cell receptor binding of agonist and antagonist ligands. Immunity 10, 227–237 (1999).

    Article  CAS  Google Scholar 

  24. Baker, B.M. & Wiley, D.C. αβ T cell receptor ligand-specific oligomerization revisited. Immunity 14, 681–692 (2001).

    Article  CAS  Google Scholar 

  25. Stewart-Jones, G.B.E., McMichael, A.J., Bell, J.I., Stuart, D.I. & Jones, E.Y. A structural basis for immunodominant human T cell receptor recognition. Nat. Immunol. 4, 657–663 (2003).

    Article  CAS  Google Scholar 

  26. Tynan, F.E. et al. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I–bound peptide. Nat. Immunol. 6, 1114–1122 (2005).

    Article  CAS  Google Scholar 

  27. Clements, C.S., Dunstone, M.A., Macdonald, W.A., McCluskey, J. & Rossjohn, J. Specificity on a knife-edge: the αβ T cell receptor. Curr. Opin. Struct. Biol. 16, 1–9 (2006).

    Article  Google Scholar 

  28. Kedl, R.M., Kappler, J.W. & Marrack, P. Epitope dominance, competition and affinity maturation. Curr. Opin. Immunol. 15, 120–127 (2003).

    Article  CAS  Google Scholar 

  29. Hoare, H.L. et al. Structural basis for a major histocompatibility complex class Ib–restricted T cell response. Nat. Immunol. 7, 256–264 (2006).

    Article  CAS  Google Scholar 

  30. Goodnow, C.C., Sprent, J., de St Groth, B.F. & Vinuesa, C.G. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 435, 590–597 (2005).

    Article  CAS  Google Scholar 

  31. Gronski, M.A. et al. TCR affinity and negative regulation limit autoimmunity. Nat. Med. 10, 1234–1239 (2004).

    Article  CAS  Google Scholar 

  32. Zehn, D. & Bevan, M.J. Cells with low avidity for a tissue-restricted antigen routinely evade central and peripheral tolerance and cause autoimmunity. Immunity 25, 261–270 (2006).

    Article  CAS  Google Scholar 

  33. Baker, B.M., Gagnon, S.J., Biddison, W.E. & Wiley, D.C. Conversion of a T cell antagonist into an agonist by repairing a defect in the TCR/peptide/MHC interface: implications for TCR signaling. Immunity 13, 475–484 (2000).

    Article  CAS  Google Scholar 

  34. Degano, M. et al. A functional hot spot for antigen recognition in a superagonist TCR/MHC complex. Immunity 12, 251–261 (2000).

    Article  CAS  Google Scholar 

  35. Call, M.E. & Wucherpfennig, K.W. The T cell receptor: critical role of the membrane environment in receptor assembly and function. Annu. Rev. Immunol. 23, 101–125 (2005).

    Article  CAS  Google Scholar 

  36. Kuhns, M.S., Davis, M.M. & Garcia, K.C. Deconstructing the form and function of the TCR/CD3 complex. Immunity 24, 133–139 (2006).

    Article  CAS  Google Scholar 

  37. van der Merwe, P.A., Davis, S.J., Shaw, A.S. & Dustin, M.L. Cytoskeletal polarization and redistribution of cell-surface molecules during T cell recognition. Semin. Immunol. 12, 5–21 (2000).

    Article  CAS  Google Scholar 

  38. Alarcon, B., Gil, D., Delgado, P. & Schamel, W.W. Initiation of TCR signaling: regulation within CD3 dimers. Immunol. Rev. 191, 38–46 (2003).

    Article  CAS  Google Scholar 

  39. Frank, S.J. Receptor dimerization in GH and erythropoietin action–it takes two to tango, but how? Endocrinology 143, 2–10 (2002).

    Article  CAS  Google Scholar 

  40. Cochran, J.R., Cameron, T.O. & Stern, L.J. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity 12, 241–250 (2000).

    Article  CAS  Google Scholar 

  41. Adams, E.J., Chien, Y.-H. & Garcia, K.C. Structure of a γδ T cell receptor in complex with the nonclassical MHC T22. Science 308, 227–231 (2005).

    Article  CAS  Google Scholar 

  42. Nishimura, M.I. et al. T-cell receptor repertoire in tumor-infiltrating lymphocytes. Analysis of melanoma-specific long-term lines. J. Immunother. 16, 85–94 (1994).

    Article  CAS  Google Scholar 

  43. Boulter, J.M. et al. Stable, soluble T-cell receptor molecules for crystallization and therapeutics. Protein Eng. 16, 707–711 (2003).

    Article  CAS  Google Scholar 

  44. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  45. Storoni, L.C., McCoy, A.J. & Read, R.J. Likelihood-enhanced fast rotation functions. Acta Crystallogr. D 60, 432–438 (2004).

    Article  Google Scholar 

  46. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  47. McRee, D.E. XtalView/Xfit–A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol. 125, 156–165 (1999).

    Article  CAS  Google Scholar 

  48. Laskowski, R.A., MacArthur, M.W., Moss, D.S. & Thornton, J.M. PROCHECK: A program to check the stereo chemical quality of protein structures. J. Appl. Crystallogr. 26, 283–291 (1993).

    Article  CAS  Google Scholar 

  49. Collaborative Computational Project. No. 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D 50, 240–255 (1994).

  50. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallog. 24, 946–950 (1991).

    Article  Google Scholar 

  51. Bacon, D.J. & Anderson, W.F. A fast algorithm for rendering space-filling molecule pictures. J. Mol. Graph. 6, 219–220 (1988).

    Article  Google Scholar 

  52. Schuck, P., Perugini, M.A., Gonzales, N.R., Howlett, G.J. & Schubert, D. Size-distribution analysis of proteins by analytical ultracentrifugation: strategies and application to model systems. Biophys. J. 82, 1096–1111 (2002).

    Article  CAS  Google Scholar 

  53. Brown, P.H. & Schuck, P. Macromolecular size-and-shape distributions by sedimentation velocity analytical ultracentrifugation. Biophys. J. 90, 4651–4661 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.M. Pardoll for critical reading of the manuscript; E.J. Sundberg for initial studies; Y. Yin and S. Li for assistance with peptide synthesis; and T. McMiller for assistance with T cell assays. Supported by the National Institutes of Health (AI036900 to R.A.M.), the Intramural Research Program of the National Institutes of Health, National Cancer Institute, Center for Cancer Research (M.I.G. and S.L.T.) and the Cancer Research Institute (L.D.).

Author information

Authors and Affiliations

Authors

Contributions

L.D., X-ray crystallographic analyses; R.J.L., P.H.B., G.X., L.T. and Q.W., biochemical and biophysical experiments; M.I.G., G.G.C. and M.I.N., derivation and characterization of T cell clones; and S.L.T. and R.A.M., project direction.

Corresponding authors

Correspondence to Suzanne L Topalian or Roy A Mariuzza.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Table 1

Interactions between TCR and MHC molecules in the E8-mutTPI-DR1, HA1.7-HA-DR1 and 3A6-MBP-DR2 complexes. (PDF 84 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deng, L., Langley, R., Brown, P. et al. Structural basis for the recognition of mutant self by a tumor-specific, MHC class II–restricted T cell receptor. Nat Immunol 8, 398–408 (2007). https://doi.org/10.1038/ni1447

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1447

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing