Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Development, cytokine profile and function of human interleukin 17–producing helper T cells

Abstract

TH-17 cells are a distinct lineage of proinflammatory T helper cells that are essential for autoimmune disease. In mice, commitment to the TH-17 lineage is dependent on transforming growth factor-β and interleukin 6 (IL-6). Here we demonstrate that IL-23 and IL-1β induced the development of human TH-17 cells expressing IL-17A, IL-17F, IL-22, IL-26, interferon-γ, the chemokine CCL20 and transcription factor RORγt. In situ, TH-17 cells were identified by expression of the IL-23 receptor and the memory T cell marker CD45RO. Psoriatic skin lesions contained IL-23-producing dendritic cells and were enriched in the cytokines produced by human TH-17 cells that promote the production of antimicrobial peptides in human keratinocytes. Our data collectively indicate that human and mouse TH-17 cells require distinct factors during differentiation and that human TH-17 cells may regulate innate immunity in epithelial cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: IL-23, but not a combination of TGF-β and IL-6, promotes the development of TH-17 cells from human naive CD4+ T cells.
Figure 2: IL-23 and IL-1β drive the differentiation of human TH-17 cells.
Figure 3: Human memory CD4+ T cells express IL-23R, produce substantial amounts of IL-17A and express the same set of cytokines as in vitro–polarized TH-17 cells.
Figure 4: IL-23p19 and TH-17 effector cytokines are associated with human psoriasis.
Figure 5: TH-17 effector cytokines elicit the expression of antimicrobial molecules from human keratinocytes.

Similar content being viewed by others

References

  1. Mosmann, T.R. & Coffman, R.L. TH1 and TH2 cells: different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Abbas, A.K., Murphy, K.M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Aggarwal, S., Ghilardi, N., Xie, M.H., de Sauvage, F.J. & Gurney, A.L. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin-17. J. Biol. Chem. 278, 1910–1914 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Harrington, L.E. et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol. 6, 1123–1132 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Steinman, L. A brief history of TH17, the first major revision in the TH1/TH2 hypothesis of T cell–mediated tissue damage. Nat. Med. 13, 139–145 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. Bettelli, E., Oukka, M. & Kuchroo, V.K. TH-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8, 345–350 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. Liang, S.C. et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203, 2271–2279 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Murphy, C.A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Park, H. et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol. 6, 1133–1141 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yen, D. et al. IL-23 is essential for T cell-mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Oppmann, B. et al. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13, 715–725 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Mangan, P.R. et al. Transforming growth factor-β induces development of the TH17 lineage. Nature 441, 231–234 (2006).

    Article  CAS  PubMed  Google Scholar 

  16. Veldhoen, M., Hocking, R.J., Atkins, C.J., Locksley, R.M. & Stockinger, B. TGFβ in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24, 179–189 (2006).

    Article  CAS  PubMed  Google Scholar 

  17. Bettelli, E. et al. Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells. Nature 441, 235–238 (2006).

    Article  CAS  PubMed  Google Scholar 

  18. Ivanov, I.I. et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126, 1121–1133 (2006).

    Article  CAS  PubMed  Google Scholar 

  19. Sutton, C., Brereton, C., Keogh, B., Mills, K.H. & Lavelle, E.C. A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J. Exp. Med. 203, 1685–1691 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Batten, M. et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17–producing T cells. Nat. Immunol. 7, 929–936 (2006).

    Article  CAS  PubMed  Google Scholar 

  21. Stumhofer, J.S. et al. Interleukin 27 negatively regulates the development of interleukin 17–producing T helper cells during chronic inflammation of the central nervous system. Nat. Immunol. 7, 937–945 (2006).

    Article  CAS  PubMed  Google Scholar 

  22. Laurence, A. et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity 26, 371–381 (2007).

    Article  CAS  PubMed  Google Scholar 

  23. Chan, J.R. et al. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med. 203, 2577–2587 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Schon, M.P. & Boehncke, W.H. Psoriasis. N. Engl. J. Med. 352, 1899–1912 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Harder, J. & Schroder, J.M. Psoriatic scales: a promising source for the isolation of human skin-derived antimicrobial proteins. J. Leukoc. Biol. 77, 476–486 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. Selsted, M.E. & Ouellette, A.J. Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551–557 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Lee, E. et al. Increased expression of interleukin 23 p19 and p40 in lesional skin of patients with psoriasis vulgaris. J. Exp. Med. 199, 125–130 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wolk, K. et al. IL-22 regulates the expression of genes responsible for antimicrobial defense, cellular differentiation, and mobility in keratinocytes: a potential role in psoriasis. Eur. J. Immunol. 36, 1309–1323 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Teunissen, M.B., Koomen, C.W., de Waal Malefyt, R., Wierenga, E.A. & Bos, J.D. Interleukin-17 and interferon-γ synergize in the enhancement of proinflammatory cytokine production by human keratinocytes. J. Invest. Dermatol. 111, 645–649 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Boniface, K. et al. IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J. Immunol. 174, 3695–3702 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Hor, S. et al. The T-cell lymphokine interleukin-26 targets epithelial cells through the interleukin-20 receptor 1 and interleukin-10 receptor 2 chains. J. Biol. Chem. 279, 33343–33351 (2004).

    Article  PubMed  Google Scholar 

  32. Wiekowski, M.T. et al. Ubiquitous transgenic expression of the IL-23 subunit p19 induces multiorgan inflammation, runting, infertility, and premature death. J. Immunol. 166, 7563–7570 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Cargill, M. et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 80, 273–290 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. Krueger, G.G. et al. A human interleukin-12/23 monoclonal antibody for the treatment of psoriasis. N. Engl. J. Med. 356, 580–592 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Nagalakshmi, M.L., Murphy, E., McClanahan, T. & de Waal Malefyt, R. Expression patterns of IL-10 ligand and receptor gene families provide leads for biological characterization. Int. Immunopharmacol. 4, 577–592 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Brown, K.L. & Hancock, R.E. Cationic host defense (antimicrobial) peptides. Curr. Opin. Immunol. 18, 24–30 (2006).

    Article  CAS  PubMed  Google Scholar 

  37. Gurney, A.L. IL-22, a Th1 cytokine that targets the pancreas and select other peripheral tissues. Int. Immunopharmacol. 4, 669–677 (2004).

    Article  CAS  PubMed  Google Scholar 

  38. Fossiez, F. et al. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J. Exp. Med. 183, 2593–2603 (1996).

    Article  CAS  PubMed  Google Scholar 

  39. Sheikh, F. et al. Cutting edge: IL-26 signals through a novel receptor complex composed of IL-20 receptor 1 and IL-10 receptor 2. J. Immunol. 172, 2006–2010 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Hoover, D.M. et al. The structure of human macrophage inflammatory protein-3α/CCL20. Linking antimicrobial and CC chemokine receptor-6-binding activities with human β-defensins. J. Biol. Chem. 277, 37647–37654 (2002).

    Article  CAS  PubMed  Google Scholar 

  41. Yang, D. et al. Many chemokines including CCL20/MIP-3α display antimicrobial activity. J. Leukoc. Biol. 74, 448–455 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Iwasaki, A. & Kelsall, B.L. Localization of distinct Peyer's patch dendritic cell subsets and their recruitment by chemokines macrophage inflammatory protein (MIP)-3α, MIP-3β, and secondary lymphoid organ chemokine. J. Exp. Med. 191, 1381–1394 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vanbervliet, B. et al. Sequential involvement of CCR2 and CCR6 ligands for immature dendritic cell recruitment: possible role at inflamed epithelial surfaces. Eur. J. Immunol. 32, 231–242 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. Liao, F. et al. CC-chemokine receptor 6 is expressed on diverse memory subsets of T cells and determines responsiveness to macrophage inflammatory protein 3 α. J. Immunol. 162, 186–194 (1999).

    CAS  PubMed  Google Scholar 

  45. Yang, D. et al. Beta-defensins: linking innate and adaptive immunity through dendritic and T cell CCR6. Science 286, 525–528 (1999).

    Article  CAS  PubMed  Google Scholar 

  46. Stark, M.A. et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity 22, 285–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  47. Happel, K.I. et al. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J. Exp. Med. 202, 761–769 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ye, P. et al. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J. Exp. Med. 194, 519–527 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kleinschek, M.A. et al. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J. Immunol. 176, 1098–1106 (2006).

    Article  CAS  PubMed  Google Scholar 

  50. Yssel, H.S. & Spits, H. in Current Protocols in Immunology 7–19 (Green and Wiley, New York, 2001).

    Google Scholar 

Download references

Acknowledgements

Supported by the National Health and Medical Research Council of Australia (N.J.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rene de Waal Malefyt.

Ethics declarations

Competing interests

N.J.W., K.B., J.R.C., B.S.M., W.M.B., J.D.M., B.B., K.S., T.C., R.A.K., D.J.C., T.K.M., E.P.B. & R.d.W.M. are employed by Schering-Plough Biopharma, which is supported by Schering-Plough Corporation.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–2 and Methods (PDF 1304 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, N., Boniface, K., Chan, J. et al. Development, cytokine profile and function of human interleukin 17–producing helper T cells. Nat Immunol 8, 950–957 (2007). https://doi.org/10.1038/ni1497

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1497

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing