Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

T cell antigen receptor stimulation induces MALT1 paracaspase–mediated cleavage of the NF-κB inhibitor A20

Abstract

The paracaspase MALT1 mediates T cell antigen receptor–induced signaling to the transcription factor NF-κB and is indispensable for T cell activation and proliferation. Enhanced expression of MALT1 or aberrant expression of a fusion protein of the apoptosis inhibitor API2 and MALT1 has been linked to mucosa-associated lymphoid tissue lymphoma. Despite the presence of a caspase-like domain, MALT1 proteolytic activity has not yet been demonstrated. Here we show that T cell antigen receptor stimulation induced recruitment of the NF-κB inhibitor A20 into a complex of MALT1 and the adaptor protein Bcl-10, leading to MALT1-mediated processing of A20. API2-MALT1 expression likewise resulted in cleavage of A20. MALT1 cleaved human A20 after arginine 439 and impaired its NF-κB-inhibitory function. Our studies identify A20 as a substrate of MALT1 and emphasize the importance of MALT1 proteolytic activity in the 'fine tuning' of T cell antigen receptor signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of a 37-kDa fragment of A20 after activation of T cells and B cells.
Figure 2: MALT1 interacts with A20 and is essential for its proteolytic cleavage.
Figure 3: A20 is cleaved by MALT1.
Figure 4: Human A20 is processed by MALT1 at R439.
Figure 5: Mouse and human A20 are processed at distinct sites.
Figure 6: Cleavage of A20 by MALT1 disrupts its inhibitory effect on TCR-induced activation of NF-κB.
Figure 7: Inhibition of the proteolytic activity of MALT1 or AP12-MALT1 decreases MALT1-mediated NF-κB activation and IL-2 production.

Similar content being viewed by others

References

  1. Matsumoto, R. et al. Phosphorylation of CARMA1 plays a critical role in T cell receptor-mediated NF-κB activation. Immunity 23, 575–585 (2005).

    Article  CAS  Google Scholar 

  2. Sommer, K. et al. Phosphorylation of the CARMA1 linker controls NF-κB activation. Immunity 23, 561–574 (2005).

    Article  CAS  Google Scholar 

  3. Ruland, J. et al. Bcl10 is a positive regulator of antigen receptor-induced activation of NF-κB and neural tube closure. Cell 104, 33–42 (2001).

    Article  CAS  Google Scholar 

  4. Ruland, J., Duncan, G.S., Wakeham, A. & Mak, T.W. Differential requirement for Malt1 in T and B cell antigen receptor signaling. Immunity 19, 749–758 (2003).

    Article  CAS  Google Scholar 

  5. Ruefli-Brasse, A.A., French, D.M. & Dixit, V.M. Regulation of NF-κB-dependent lymphocyte activation and development by paracaspase. Science 302, 1581–1584 (2003).

    Article  CAS  Google Scholar 

  6. Ferch, U. et al. MALT1 directs B cell receptor-induced canonical nuclear factor-κB signaling selectively to the c-Rel subunit. Nat. Immunol. 8, 984–991 (2007).

    Article  CAS  Google Scholar 

  7. Zhang, Q. et al. Inactivating mutations and overexpression of BCL10, a caspase recruitment domain-containing gene, in MALT lymphoma with t(1;14)(p22;q32). Nat. Genet. 22, 63–68 (1999).

    Article  CAS  Google Scholar 

  8. Willis, T.G. et al. Bcl10 is involved in t(1;14)(p22;q32) of MALT B cell lymphoma and mutated in multiple tumor types. Cell 96, 35–45 (1999).

    Article  CAS  Google Scholar 

  9. Dierlamm, J. et al. The apoptosis inhibitor gene API2 and a novel 18q gene, MLT, are recurrently rearranged in the t(11;18)(q21;q21) associated with mucosa-associated lymphoid tissue lymphomas. Blood 93, 3601–3609 (1999).

    CAS  PubMed  Google Scholar 

  10. Sanchez-Izquierdo, D. et al. MALT1 is deregulated by both chromosomal translocation and amplification in B-cell non-Hodgkin lymphoma. Blood 101, 4539–4546 (2003).

    Article  CAS  Google Scholar 

  11. Zhou, H. et al. Bcl10 activates the NF-κB pathway through ubiquitination of NEMO. Nature 427, 167–171 (2004).

    Article  CAS  Google Scholar 

  12. Uren, A.G. et al. Identification of paracaspases and metacaspases: two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma. Mol. Cell 6, 961–967 (2000).

    CAS  PubMed  Google Scholar 

  13. Sun, L., Deng, L., Ea, C.K., Xia, Z.P. & Chen, Z.J. The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289–301 (2004).

    Article  CAS  Google Scholar 

  14. Lucas, P.C. et al. Bcl10 and MALT1, independent targets of chromosomal translocation in MALT lymphoma, cooperate in a novel NF-κB signaling pathway. J. Biol. Chem. 276, 19012–19019 (2001).

    Article  CAS  Google Scholar 

  15. Beyaert, R., Heyninck, K. & Van Huffel, S. A20 and A20-binding proteins as cellular inhibitors of nuclear factor-κB-dependent gene expression and apoptosis. Biochem. Pharmacol. 60, 1143–1151 (2000).

    Article  CAS  Google Scholar 

  16. Lee, E.G. et al. Failure to regulate TNF-induced NF-κB and cell death responses in A20-deficient mice. Science 289, 2350–2354 (2000).

    Article  CAS  Google Scholar 

  17. Tewari, M. et al. Lymphoid expression and regulation of A20, an inhibitor of programmed cell death. J. Immunol. 154, 1699–1706 (1995).

    CAS  PubMed  Google Scholar 

  18. Sun, Z. et al. PKC-θ is required for TCR-induced NF-κB activation in mature but not immature T lymphocytes. Nature 404, 402–407 (2000).

    Article  CAS  Google Scholar 

  19. Wang, D. et al. A requirement for CARMA1 in TCR-induced NF-κB activation. Nat. Immunol. 3, 830–835 (2002).

    Article  CAS  Google Scholar 

  20. Su, T.T. et al. PKC-β controls IκB kinase lipid raft recruitment and activation in response to BCR signaling. Nat. Immunol. 3, 780–786 (2002).

    Article  CAS  Google Scholar 

  21. Egawa, T. et al. Requirement for CARMA1 in antigen receptor-induced NF-κB activation and lymphocyte proliferation. Curr. Biol. 13, 1252–1258 (2003).

    Article  CAS  Google Scholar 

  22. Snipas, S.J. et al. Characteristics of the caspase-like catalytic domain of human paracaspase. Biol. Chem. 385, 1093–1098 (2004).

    Article  CAS  Google Scholar 

  23. Earnshaw, W.C., Martins, L.M. & Kaufmann, S.H. Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu. Rev. Biochem. 68, 383–424 (1999).

    Article  CAS  Google Scholar 

  24. Vercammen, D. et al. Type II metacaspases Atmc4 and Atmc9 of Arabidopsis thaliana cleave substrates after arginine and lysine. J. Biol. Chem. 279, 45329–45336 (2004).

    Article  CAS  Google Scholar 

  25. Wertz, I.E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694–699 (2004).

    Article  CAS  Google Scholar 

  26. Boone, D.L. et al. The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052–1060 (2004).

    Article  CAS  Google Scholar 

  27. Boatright, K.M. et al. A unified model for apical caspase activation. Mol. Cell 11, 529–541 (2003).

    Article  CAS  Google Scholar 

  28. Heyninck, K. & Beyaert, R. A20 inhibits NF-κB activation by dual ubiquitin-editing functions. Trends Biochem. Sci. 30, 1–4 (2005).

    Article  CAS  Google Scholar 

  29. Mauro, C. et al. ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-κB. J. Biol. Chem. 281, 18482–18488 (2006).

    Article  CAS  Google Scholar 

  30. Klinkenberg, M., Van Huffel, S., Heyninck, K. & Beyaert, R. Functional redundancy of the zinc fingers of A20 for inhibition of NF-κB activation and protein-protein interactions. FEBS Lett. 498, 93–97 (2001).

    Article  CAS  Google Scholar 

  31. Dykstra, M., Cherukuri, A., Sohn, H.W., Tzeng, S.J. & Pierce, S.K. Location is everything: lipid rafts and immune cell signalling. Annu. Rev. Immunol. 21, 457–481 (2003).

    Article  CAS  Google Scholar 

  32. Gaide, O. et al. CARMA1 is a critical lipid raft-associated regulator of TCR-induced NF-κB activation. Nat. Immunol. 3, 836–843 (2002).

    Article  CAS  Google Scholar 

  33. Misra, R.S. et al. Caspase-8 and c-FLIPL associate in lipid rafts with NF-κB adaptors during T cell activation. J. Biol. Chem. 282, 19365–19374 (2007).

    Article  CAS  Google Scholar 

  34. Noels, H. et al. A novel TRAF6 binding site in MALT1 defines distinct mechanisms of NF-κB activation by API2MALT1 fusions. J. Biol. Chem. 282, 10180–10189 (2007).

    Article  CAS  Google Scholar 

  35. McAllister-Lucas, L.M. et al. CARMA3/Bcl10/MALT1-dependent NF-κB activation mediates angiotensin II-responsive inflammatory signalling in nonimmune cells. Proc. Natl. Acad. Sci. USA 104, 139–144 (2007).

    Article  CAS  Google Scholar 

  36. Klemm, S., Zimmermann, S., Peschel, C., Mak, T.W. & Ruland, J. Bcl10 and Malt1 control lysophosphatidic acid-induced NF-κB activation and cytokine production. Proc. Natl Acad. Sci. USA 104, 134–138 (2007).

    Article  CAS  Google Scholar 

  37. Klemm, S. et al. The Bcl10-Malt1 complex segregates FcεRI-mediated nuclear factor κB activation and cytokine production from mast cell degranulation. J. Exp. Med. 203, 337–347 (2006).

    Article  Google Scholar 

  38. Gross, O. et al. Card9 controls a non-TLR signalling pathway for innate anti-fungal immunity. Nature 442, 651–656 (2006).

    Article  CAS  Google Scholar 

  39. Heyninck, K. et al. The zinc finger protein A20 inhibits TNF-induced NF-kappaB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-κB-inhibiting protein ABIN. J. Cell Biol. 145, 1471–1482 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Vlieghe and P. Hulpiau for help with the alignment of caspase-like molecules; J. Phillipe (Ghent University, Belgium) and M. Dyer (University of Leicester, UK) for gifts of the Jurkat and SSK41 cell lines, respectively; and S. Janssens and D. Vercammen for discussions. Supported by the 'Interuniversity Attraction Poles' (IAP6/18 to R.B. and IAP5/25 to P.M.), 'Fonds voor Wetenschappelijk Onderzoek-Vlaanderen' (3G010505 to R.B. and G050704 to P.M.), King Baudouin Foundation (Alphonse and Jean Forton Fund; R.B.), Ghent University (Concerted Action Grant 01G06B6 to R.B.) and Catholic University Leuven (Concerted Action Grant to P.M.).

Author information

Authors and Affiliations

Authors

Contributions

B.C., M.B., K.H., T.B., M.H. and J.S. did the experiments; L.S. and Z.J.C. provided recombinant MALT1; B.C., M.B. and R.B. wrote the paper; B.C., M.B., K.H. and R.B. designed the experiments; and R.B. and P.M. supervised the experiments, offered scientific advice and share senior authorship.

Corresponding author

Correspondence to Rudi Beyaert.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 728 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coornaert, B., Baens, M., Heyninck, K. et al. T cell antigen receptor stimulation induces MALT1 paracaspase–mediated cleavage of the NF-κB inhibitor A20. Nat Immunol 9, 263–271 (2008). https://doi.org/10.1038/ni1561

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1561

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing