Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1

Abstract

Transforming growth factor-β (TGF-β) signaling in naive T cells induces expression of the transcription factor Foxp3, a 'master' regulator of regulatory T cells (Treg cells). However, the molecular mechanisms leading to Foxp3 induction remain unclear. Here we show that Itch−/− T cells were resistant to TGF-β treatment and had less Foxp3 expression. The E3 ubiquitin ligase Itch associated with and promoted conjugation of ubiquitin to the transcription factor TIEG1. Itch cooperated with TIEG1 to induce Foxp3 expression, which was reversed by TIEG1 deficiency. Functionally, 'TGF-β-converted' Treg cells generated from TIEG1-deficient mice were unable to suppress airway inflammation in vivo. These results suggest TIEG and Itch contribute to a ubiquitin-dependent nonproteolytic pathway that regulates inducible Foxp3 expression and the control of allergic responses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Itch−/− CD4+CD25 cells are resistant to TGF-β-mediated suppression.
Figure 2: Itch regulates Foxp3 expression in TGF-β-treated CD4+CD25 cells.
Figure 3: Itch associates with TIEG1 and targets it for ubiquitination.
Figure 4: Itch-mediated ubiquitination of TIEG1 is necessary for Foxp3 expression.
Figure 5: TIEG1 expression restores Foxp3 expression in Itch−/− T cells.
Figure 6: TIEG1-deficient T cells fail to express Foxp3.
Figure 7: Reconstitution of TIEG1 restores Foxp3 expression.
Figure 8: TIEG1-deficient Treg cells are defective in inhibiting airway inflammation.

Similar content being viewed by others

References

  1. Wills-Karp, M. Immunologic basis of antigen-induced airway hyperresponsiveness. Annu. Rev. Immunol. 17, 255–281 (1999).

    Article  CAS  Google Scholar 

  2. Umetsu, D.T., McIntire, J.J., Akbari, O., Macaubas, C. & DeKruyff, R.H. Asthma: an epidemic of dysregulated immunity. Nat. Immunol. 3, 715–720 (2002).

    Article  CAS  Google Scholar 

  3. Herrick, C.A. & Bottomly, K. To respond or not to respond: T cells in allergic asthma. Nat. Rev. Immunol. 3, 405–412 (2003).

    Article  CAS  Google Scholar 

  4. McMenamin, C., Pimm, C., McKersey, M. & Holt, P.G. Regulation of IgE responses to inhaled antigen in mice by antigen-specific γδ T cells. Science 265, 1869–1871 (1994).

    Article  CAS  Google Scholar 

  5. Ostroukhova, M. et al. Tolerance induced by inhaled antigen involves CD4+ T cells expressing membrane-bound TGF-β and FOXP3. J. Clin. Invest. 114, 28–38 (2004).

    Article  CAS  Google Scholar 

  6. Mucida, D. et al. Oral tolerance in the absence of naturally occurring Tregs. J. Clin. Invest. 115, 1923–1933 (2005).

    Article  CAS  Google Scholar 

  7. Sakaguchi, S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu. Rev. Immunol. 22, 531–562 (2004).

    Article  CAS  Google Scholar 

  8. Fontenot, J.D. & Rudensky, A.Y. A well adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3. Nat. Immunol. 6, 331–337 (2005).

    Article  CAS  Google Scholar 

  9. Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.K. & Flavell, R.A. Transforming growth factor-β regulation of immune responses. Annu. Rev. Immunol. 24, 99–146 (2006).

    Article  CAS  Google Scholar 

  10. Kulkarni, A.B. et al. Transforming growth factor B1 null mutation in mice causes excessive inflammatory response and early death. Proc. Natl. Acad. Sci. USA 90, 770–774 (1993).

    Article  CAS  Google Scholar 

  11. Li, M.O., Sanjabi, S. & Flavell, R.A. Transforming growth factor-β controls development, homeostasis, and tolerance of T cells by regulatory T cell-dependent and -independent mechanisms. Immunity 25, 455–471 (2006).

    Article  CAS  Google Scholar 

  12. Marie, J.C., Liggitt, D. & Rudensky, A.Y. Cellular mechanisms of fatal early-onset autoimmunity in mice with the T cell-specific targeting of transforming growth factor-β receptor. Immunity 25, 441–454 (2006).

    Article  CAS  Google Scholar 

  13. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-β 1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  Google Scholar 

  14. Chen, W. et al. Conversion of peripheral CD4+CD25 naive T cells to CD4+CD25+ regulatory T cells by TGF-β induction of transcription factor Foxp3. J. Exp. Med. 198, 1875–1886 (2003).

    Article  CAS  Google Scholar 

  15. Fantini, M.C. et al. Cutting edge: TGF-β induces a regulatory phenotype in CD4+CD25 T cells through Foxp3 induction and down-regulation of Smad7. J. Immunol. 172, 5149–5153 (2004).

    Article  CAS  Google Scholar 

  16. Wan, Y.Y. & Flavell, R.A. Identifying Foxp3-expressing suppressor T cells with a bicistronic reporter. Proc. Natl. Acad. Sci. USA 102, 5126–5131 (2005).

    Article  CAS  Google Scholar 

  17. Weaver, C.T., Hatton, R.D., Mangan, P.R. & Harrington, L.E. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu. Rev. Immunol. 25, 821–852 (2007).

    Article  CAS  Google Scholar 

  18. Perry, W.L. et al. The itchy locus encodes a novel ubiquitin protein ligase that is disrupted in α18H mice. Nat. Genet. 18, 143–146 (1998).

    Article  CAS  Google Scholar 

  19. Fang, D. et al. Dysregulation of T lymphocyte function in itchy mice: a role for Itch in TH2 differentiation. Nat. Immunol. 3, 281–287 (2002).

    Article  CAS  Google Scholar 

  20. Heissmeyer, V. et al. Calcineurin imposes T cell unresponsiveness through targeted proteolysis of signaling proteins. Nat. Immunol. 5, 255–265 (2004).

    Article  CAS  Google Scholar 

  21. Venuprasad, K. et al. Convergence of Itch-induced ubiquitination with MEKK1-JNK signaling in Th2 tolerance and airway inflammation. J. Clin. Invest. 116, 1117–1126 (2006).

    Article  CAS  Google Scholar 

  22. Hefferan, T.E. et al. Overexpression of a nuclear protein, TIEG, mimics transforming growth factor-β action in human osteoblast cells. J. Biol. Chem. 275, 20255–20259 (2000).

    Article  CAS  Google Scholar 

  23. Wohlfert, E.A., Gorelik, L., Mittler, R., Flavell, R.A. & Clark, R.B. Cutting edge: deficiency in the E3 ubiquitin ligase Cbl-b results in a multifunctional defect in T cell TGF-β sensitivity in vitro and in vivo. J. Immunol. 176, 1316–1320 (2006).

    Article  CAS  Google Scholar 

  24. Hefferan, T.E., Subramaniam, M., Khosla, S., Riggs, B.L. & Spelsberg, T.C. Cytokine-specific induction of the TGF-β inducible early gene (TIEG): regulation by specific members of the TGF-β family. J. Cell. Biochem. 78, 380–390 (2000).

    Article  CAS  Google Scholar 

  25. Subramaniam, M. et al. TIEG1 null mouse-derived osteoblasts are defective in mineralization and in support of osteoclast differentiation in vitro. Mol. Cell. Biol. 25, 1191–1199 (2005).

    Article  CAS  Google Scholar 

  26. Sugimoto, N. et al. Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int. Immunol. 18, 1197–1209 (2006).

    Article  CAS  Google Scholar 

  27. Lomberk, G. & Urrutia, R. The family feud: turning off Sp1 by Sp1-like KLF proteins. Biochem. J. 392, 1–11 (2005).

    Article  CAS  Google Scholar 

  28. Ono, M. et al. Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446, 685–689 (2007).

    Article  CAS  Google Scholar 

  29. Wu, Y. et al. FOXP3 controls regulatory T cell function through cooperation with NFAT. Cell 126, 375–387 (2006).

    Article  CAS  Google Scholar 

  30. Gao, M. et al. Jun turnover is controlled through JNK-dependent phosphorylation of the E3 ligase Itch. Science 306, 271–275 (2004).

    Article  CAS  Google Scholar 

  31. Hershko, A. & Ciechanover, A. The ubiquitin system. Annu. Rev. Biochem. 67, 425–479 (1998).

    Article  CAS  Google Scholar 

  32. Salghetti, S.E., Caudy, A.A., Chenoweth, J.G. & Tansey, W.P. Regulation of transcriptional activation domain function by ubiquitin. Science 293, 1651–1653 (2001).

    Article  CAS  Google Scholar 

  33. Bres, V. et al. A non-proteolytic role for ubiquitin in Tat-mediated transactivation of the HIV-1 promoter. Nat. Cell Biol. 5, 754–761 (2003).

    Article  CAS  Google Scholar 

  34. Johnsen, S.A., Subramaniam, M., Monroe, D.G., Janknecht, R. & Spelsberg, T.C. Modulation of transforming growth factor β (TGFβ)/Smad transcriptional responses through targeted degradation of TGFβ-inducible early gene-1 by human seven in absentia homologue. J. Biol. Chem. 277, 30754–30759 (2002).

    Article  CAS  Google Scholar 

  35. Greer, S.F., Zika, E., Conti, B., Zhu, X.S. & Ting, J.P. Enhancement of CIITA transcriptional function by ubiquitin. Nat. Immunol. 4, 1074–1082 (2003).

    Article  CAS  Google Scholar 

  36. Trotman, L.C. et al. Ubiquitination regulates PTEN nuclear import and tumor suppression. Cell 128, 141–156 (2007).

    Article  CAS  Google Scholar 

  37. Yang, C. et al. Negative regulation of the E3 ubiquitin ligase Itch via Fyn-mediated tyrosine phosphorylation. Mol. Cell 21, 135–141 (2006).

    Article  Google Scholar 

  38. Wan, Y.Y. & Flavell, R.A. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445, 766–770 (2007).

    Article  CAS  Google Scholar 

  39. Qiu, L. et al. Recognition and ubiquitination of Notch by Itch, a Hect-type E3 ubiquitin ligase. J. Biol. Chem. 275, 35734–35737 (2000).

    Article  CAS  Google Scholar 

  40. Bai, Y., Yang, C., Hu, K., Elly, C. & Liu, Y.C. Itch E3 ligase-mediated regulation of TGF-β signaling by modulating smad2 phosphorylation. Mol. Cell 15, 825–831 (2004).

    Article  CAS  Google Scholar 

  41. Koonpaew, S., Shen, S., Flowers, L. & Zhang, W. LAT-mediated signaling in CD4+CD25+ regulatory T cell development. J. Exp. Med. 203, 119–129 (2006).

    Article  CAS  Google Scholar 

  42. Floess, S. et al. Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol. 5, e38 (2007).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Zhang (Duke University) for providing Foxp3 retroviral vector, and J. Huehn (Charite University) for the Foxp3-luciferase reporter plasmid. Supported by the National Institutes of Health (Y.-C.L.).

Author information

Authors and Affiliations

Authors

Contributions

K.V. contributed to the design and execution of the experiments and data interpretation and helped prepare the manuscript; H.H., Y.H., C.E. and J.S. did the molecular and biochemical experiments and provided technical assistance; S.M. and T.S. provided mice; and Y.-C.L. supervised the project and helped prepare the manuscript.

Corresponding author

Correspondence to Yun-Cai Liu.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 1033 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venuprasad, K., Huang, H., Harada, Y. et al. The E3 ubiquitin ligase Itch regulates expression of transcription factor Foxp3 and airway inflammation by enhancing the function of transcription factor TIEG1. Nat Immunol 9, 245–253 (2008). https://doi.org/10.1038/ni1564

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni1564

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing