Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The immunological synapse and CD28-CD80 interactions

Abstract

According to the two-signal model of T cell activation, costimulatory molecules augment T cell receptor (TCR) signaling, whereas adhesion molecules enhance TCR–MHC-peptide recognition. The structure and binding properties of CD28 imply that it may perform both functions, blurring the distinction between adhesion and costimulatory molecules. Our results show that CD28 on naïve T cells does not support adhesion and has little or no capacity for directly enhancing TCR–MHC-peptide interactions. Instead of being dependent on costimulatory signaling, we propose that a key function of the immunological synapse is to generate a cellular microenvironment that favors the interactions of potent secondary signaling molecules, such as CD28.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Costimulatory effect of GPI-CD80 on transgenic T cell activation.
Figure 2: Naïve T cells do not adhere to CD80 substrates.
Figure 3: CD28-CD80 binding parameters.
Figure 4: Low CD28 mobility regulated by its cytoplasmic tail.
Figure 5: The CD28 cytoplasmic domain of CD28 limited interaction with CD80.
Figure 6: CD28 engagement had no effect on I-Ek or ICAM-1 engagement within the immunological synapse.
Figure 7: CD80 engagement in the central cluster was not required for formation of the immunological synapse.

Similar content being viewed by others

References

  1. Babcock, S. K., Gill, R. G., Bellgrau, D. & Lafferty, K. J. Studies on the two-signal model for T cell activation in vivo. Transplant. Proc. 19, 303–306 (1987).

    CAS  PubMed  Google Scholar 

  2. Jenkins, M. K. & Schwartz, R. H. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165, 302–319 (1987).

    Article  CAS  PubMed  Google Scholar 

  3. Thompson, C. B. et al. CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines. Proc. Natl. Acad. Sci. USA 86, 1333–1337 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Shaw, A. S. & Dustin, M. L. Making the T cell receptor go the distance: a topological view of T cell activation. Immunity 6, 361–369 (1997).

    Article  CAS  PubMed  Google Scholar 

  5. Viola, A. & Lanzavecchia, A. T cell activation determined by T cell receptor number and tunable thresholds. Science 273, 104–106 (1996).

    Article  CAS  PubMed  Google Scholar 

  6. Tuosto, L. & Acuto, O. CD28 affects the earliest signaling events generated by TCR engagement. Eur. J. Immunol. 28, 2131–2142 (1998).

    Article  CAS  PubMed  Google Scholar 

  7. Pagès, F. et al. Binding of phosphatidyl-inositol-3-OH kinase to CD28 is required for T cell signalling. Nature 369, 327–329 (1994).

    Article  PubMed  Google Scholar 

  8. August, A. et al. CD28 is associated with and induces the immediate tyrosine phosphorylation and activation of the Tec family kinase ITK/EMT in the human Jurkat leukemic T-cell line. Proc. Natl. Acad. Sci. USA 91, 9347–9351 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Holdorf, A. D. et al. Proline residues in CD28 and the Src homology (SH)3 domain of Lck are required for T cell costimulation. J. Exp. Med. 190, 375–384 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kalli, K., Huntoon, C., Bell, M. & McKean, D. J. Mechanism responsible for T-cell antigen receptor- and CD28- or interleukin 1 (IL-1) receptor-initiated regulation of IL-2 gene expression by NF-κB. Mol. Cell. Biol. 18, 3140–3148 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–227 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Wülfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2269 (1998).

    Article  PubMed  Google Scholar 

  14. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  15. Dustin, M. L. & Shaw, A. S. Costimulation: Building an immunological synapse. Science 283, 649–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  16. Michel, F. & Acuto, O. Induction of T cell adhesion by antigen stimulation and modulation by the coreceptor CD4. Cell. Immunol. 173, 165–175 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. Schwartz, J. C., Zhang, X., Fedorov, A. A., Nathenson, S. G. & Almo, S. C. Structural basis for co-stimulation by the human CTLA-4/B7-2 complex. Nature 410, 604–608 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Dustin, M. L. et al. Low affinity interaction of human or rat T cell adhesion molecule CD2 with its ligand aligns adhering membranes to achieve high physiological affinity. J. Biol. Chem. 272, 30889–30898 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Wild, M. K. et al. Dependence of T cell antigen recognition on the dimensions of an accessory receptor-ligand complex. J. Exp. Med. 190, 31–41 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. McConnell, H. M., Watts, T. H., Weis, R. M. & Brian, A. A. Supported planar membranes in studies of cell-cell recognition in the immune system. Biochim. Biophys. Acta 864, 95–106 (1986).

    Article  CAS  PubMed  Google Scholar 

  21. Johnson, K. G., Bromley, S. K., Dustin, M. L. & Thomas, M. L. A supramolecular basis for CD45 tyrosine phosphatase regulation in sustained T cell activation. Proc. Natl. Acad. Sci. USA 97, 10138–10143 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sagerström, C. G., Kerr, E. M., Allison, J. P. & Davis, M. M. Activation and differentiation requirements of primary T cells in vitro. Proc. Natl. Acad. Sci. USA 90, 8987–8991 (1993).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Harding, F. A., McArthur, J. G., Gross, J. A., Raulet, D. H. & Allison, J. P. CD28-mediated signalling co-stimulates murine T cells and prevents induction of anergy in T-cell clones. Nature 356, 607–609 (1992).

    Article  CAS  PubMed  Google Scholar 

  24. Doty, R. T. & Clark, E. A. Subcellular localization of CD80 receptors is dependent on an intact cytoplasmic tail and is required for CD28-dependent T cell costimulation. J. Immunol. 157, 3270–3279 (1996).

    CAS  PubMed  Google Scholar 

  25. McHugh, R. S., Ahmed, S. N., Wang, Y. C., Sell, K. W. & Selvaraj, P. Construction, purification and functional incorporation on tumor cells of glycolipid-anchored human B7-1 (CD80). Proc. Natl. Acad. Sci. USA 92, 8059–8063 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chan, P. Y. et al. The influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J. Cell. Biol. 115, 245–255 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Liu, S. J., Hahn, W. C., Bierer, B. E. & Golan, D. E. Intracellular mediators regulate CD2 lateral diffusion and cytoplasmic calcium ion mobilization upon CD2-mediated T cell activation. Biophys. J. 68, 459–470 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shahinian, A. et al. Differential T cell costimulatory requirements in CD28-deficient mice. Science 261, 609–612 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. van der Merwe, P. A., McNamee, P. N., Davies, E. A., Barclay, A. N. & Davis, S. J. Topology of the CD2-CD48 cell-adhesion molecule complex: implications for antigen recognition by T cells. Curr. Biol. 5, 74–84 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. Linsley, P. S., Clark, E. A. & Ledbetter, J. A. T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl. Acad. Sci. USA 87, 5031–5035 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kaga, S., Ragg, S., Rogers, K. A. & Ochi, A. Stimulation of CD28 with B7–2 promotes focal adhesion-like cell contacts where Rho family small G proteins accumulate in T cells. J. Immunol. 160, 24–27 (1998).

    CAS  PubMed  Google Scholar 

  32. Bachmann, M. F. et al. Distinct roles for LFA-1 and CD28 during activation of naïve T cells: adhesion versus costimulation. Immunity 7, 549–557 (1997).

    Article  CAS  PubMed  Google Scholar 

  33. Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signalling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Stamper, C. C. et al. Crystal structure of the B7-1/CTLA-4 complex that inhibits human immune responses. Nature 410, 608–611 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Brown, D. A. & London, E. Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J. Biol. Chem. 275, 17221–17224 (2000).

    Article  CAS  PubMed  Google Scholar 

  36. Xavier, R., Brennan, T., Li, Q., McCormack, C. & Seed, B. Membrane compartmentation is required for efficient T cell activation. Immunity 8, 723–732 (1998).

    Article  CAS  PubMed  Google Scholar 

  37. Yashiro-Ohtani, Y. et al. Non-CD28 costimulatory molecules present in T cell rafts induce T cell costimulation by enhancing the association of TCR with rafts. J. Immunol. 164, 1251–1259 (2000).

    Article  CAS  PubMed  Google Scholar 

  38. Bischof, A., Hara, T., Lin, C. H., Beyers, A. D. & Hunig, T. Autonomous induction of proliferation, JNK and NF-κB activation in primary resting T cells by mobilized CD28. Eur. J. Immunol. 30, 876–882 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Kucik, D. F., Dustin, M. L., Miller, J. M. & Brown, E. J. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J. Clin. Invest. 97, 2139–2144 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Stein, P. H., Fraser, J. D. & Weiss, A. The cytoplasmic domain of CD28 is both necessary and sufficient for costimulation of interleukin-2 secretion and association with phosphatidylinositol 3′-kinase. Mol. Cell. Biol. 14, 3392–3402 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Berg, L. J. et al. Expression of T-cell receptor α-chain genes in transgenic mice. Mol. Cell. Biol. 8, 5459–5469 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Krensky, A. M. et al. The functional significance, distribution, and structure of LFA-1, LFA-2, and LFA-3: cell surface antigens associated with CTL-target interactions. J. Immunol. 131, 611–616 (1983).

    CAS  PubMed  Google Scholar 

  43. Razi-Wolf, Z. et al. Expression and function of the murine B7 antigen, the major costimulatory molecule expressed by peritoneal exudate cells. Proc. Natl. Acad. Sci. USA 89, 4210–4214 (1995).

    Article  Google Scholar 

  44. Takei, F. Inhibition of mixed lymphocyte response by a rat monoclonal antibody to a novel murine lymphocyte activation antigen (MALA-2). J. Immunol. 134, 1403–1407 (1985).

    CAS  PubMed  Google Scholar 

  45. Ozato, K., Mayer, N. & Sachs, D. H. Hybridoma cell lines secreting monoclonal antibodies to mouse H-2 and Ia antigens. J. Immunol. 124, 533–540 (1980).

    CAS  PubMed  Google Scholar 

  46. Olive, D. et al. Anti-CD2 (sheep red blood cell receptor) monoclonal antibodies and T cell activation I. Pairs of anti-T11.1 and T11.2 (CD2 subgroups) are strongly mitogenic for T cells in presence of 12-O-tetradecanoylphorbol 13-acetate. Eur. J. Immunol. 16, 1063–1068 (1986).

    Article  CAS  PubMed  Google Scholar 

  47. Reay, P. A. et al. Determination of the relationship between T cell responsiveness and the number of MHC-peptide complexes using specific monoclonal antibodies. J. Immunol. 164, 5626–5634 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Nunes, J. et al. CD28 mAbs with distinct binding properties differ in their ability to induce T cell activation: analysis of early and late activation events. Int. Immunol. 5, 311–315 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. Kato, K. et al. CD48 is a counter-receptor for mouse CD2 and is involved in T cell activation. J. Exp. Med. 176, 1241–1249 (1992).

    Article  CAS  PubMed  Google Scholar 

  50. Freeman, G. J. et al. Structure, expression, and T cell costimulatory activity of the murine homologue of the human B lymphocyte activation antigen B7. J. Exp. Med. 174, 625–631 (1991).

    Article  CAS  PubMed  Google Scholar 

  51. Coyne, K. E., Crisci, A. & Lublin, D. M. Construction of synthetic signals for glycosyl-phosphatidylinositol anchor attachment. Analysis of amino acid sequence requirements for anchoring. J. Biol. Chem. 268, 6689–6693 (1993).

    CAS  PubMed  Google Scholar 

  52. Warren, T. G. et al. High-level expression of biologically active, soluble forms of ICAM-1 in a novel mammalian-cell expression system. Protein Express. Purif. 5, 498–508 (1994).

    Article  CAS  Google Scholar 

  53. van der Merwe, P. A., Bodian, D. L., Daenke, S., Linsley, P. & Davis, S. J. CD80 (B7-1) binds both CD28 and CTLA-4 with a low affinity and very fast kinetics. J. Exp. Med. 185, 393–403 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Linsley, P. S. et al. Binding of the B cell activation antigen B7 to CD28 costimulates T cell proliferation and interleukin 2 mRNA accumulation. J. Exp. Med. 173, 721–730 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Dustin, M. L., Bromley, S. K., Kan, Z., Peterson, D. A. & Unanue, E. R. Antigen receptor engagement delivers a stop signal to migrating T lymphocytes. Proc. Natl. Acad. Sci. USA 94, 3909–3913 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Munson, P. J. & Rodbard, D. Number of receptor sites from Scatchard and Klotz graphs: a constructive critique. Science 220, 979–981 (1983).

    Article  CAS  PubMed  Google Scholar 

  57. Bell, G. I., Dembo, M. & Bongrand, P. Cell adhesion: Competition between nonspecific repulsion and specific binding. Biophys. J. 45, 1051–1064 (1984).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Axelrod, D., Koppel, D. E., Schlessinger, J., Elson, E. L. & Webb, W. W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank H. Reiser and M. Naquet for cells producing the 1610A1 and H155 antibodies, respectively; G. Freeman for the mCD80 cDNA;A. Holdorf for Jurkat cells expressing truncation mutants of murine CD28; R. Burack for sharing his unpublished results on cooperation of CD2 and CD28; R. Houdei for cell and antibody production; and R. Barrett for preparation of the manuscript. Supported by funds from the NIH, HHMI, the Whitaker Foundation and Irene Diamond.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael L. Dustin.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bromley, S., Iaboni, A., Davis, S. et al. The immunological synapse and CD28-CD80 interactions. Nat Immunol 2, 1159–1166 (2001). https://doi.org/10.1038/ni737

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni737

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing