Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Costimulation and endogenous MHC ligands contribute to T cell recognition

An Erratum to this article was published on 01 March 2002

Abstract

To initiate an immune response, key receptor-ligand pairs must cluster in “immune synapses” at the T cell–antigen-presenting cell (APC) interface. We visualized the accumulation of a major histocompatibility complex (MHC) class II molecule, I-Ek, at a T cell–B cell interface and found it was dependent on both antigen recognition and costimulation. This suggests that costimulation-driven active transport of T cell surface molecules helps to drive immunological synapse formation. Although only agonist peptide–MHC class II (agonist pMHC class II) complexes can initiate T cell activation, endogenous pMHC class II complexes also appeared to accumulate. To test this directly, we labeled a “null” pMHC class II complex and found that, although it lacked major TCR contact residues, it could be driven into the synapse in a TCR-dependant manner. Thus, low-affinity ligands can contribute to synapse formation and T cell signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: I-Ek accumulates at the T cell–APC interface.
Figure 2: I-Ek accumulation is controlled by costimulation and mediated by TCR but not by CD4 binding.
Figure 3: Null peptide–loaded I-Ek complexes accumulate at the interface.

Similar content being viewed by others

References

  1. Monks, C. R., Freiberg, B. A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  PubMed  Google Scholar 

  2. Grakoui, A. et al. The immunological synapse: A molecular machinery controlling T cell activation. Science 285, 221–226 (1999).

    Article  CAS  PubMed  Google Scholar 

  3. Krummel, M. F., Sjaastad, M. D., Wülfing, C. & Davis, M. M. Differential clustering of CD4 and CD3ζ during T cell recognition. Science 289, 1349–1352 (2000).

    Article  CAS  PubMed  Google Scholar 

  4. Wülfing, C., Bauch, A., Crabtree, G. R. & Davis, M. M. The vav exchange factor is an essential regulator in actin-dependent receptor translocation to the lymphocyte-antigen-presenting cell interface. Proc. Natl Acad. Sci. USA 97, 10150–10155 (2000).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dustin, M. L. & Shaw, A. S. Costimulation: building an immunological synapse. Science 283, 649–650 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Kupfer, A. & Singer, S. J. Cell biology of cytotoxic and helper T cell functions: immunofluorescence microscopic studies of single cells and cell couples. Annu. Rev. Immunol. 7, 309–337 (1989).

    Article  CAS  PubMed  Google Scholar 

  7. Singer, S. J. Intercellular communication and cell-cell adhesion. Science 255, 1671–1677 (1992).

    Article  CAS  PubMed  Google Scholar 

  8. Wülfing, C. & Davis, M. M. A receptor/cytoskeletal movement triggered by costimulation during T cell activation. Science 282, 2266–2270 (1998).

    Article  PubMed  Google Scholar 

  9. Viola, A., Schroeder, S., Sakakibara, Y. & Lanzavecchia, A. T lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 283, 680–682 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Blair, P. J. et al. CD28 co-receptor signal transduction in T-cell activation. Biochem. Soc. Trans. 25, 651–657 (1997).

    Article  CAS  PubMed  Google Scholar 

  11. Chambers, C. A. & Allison, J. P. Co-stimulation in T cell responses. Curr. Opin. Immunol. 9, 396–404 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. Sperling, A. I. & Bluestone, J. A. The complexities of T-cell co-stimulation: CD28 and beyond. Immunol. Rev. 153, 155–182 (1996).

    Article  CAS  PubMed  Google Scholar 

  13. Dustin, M. L. & Springer, T. A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Stewart, M. & Hogg, N. Regulation of leukocyte integrin function: affinity vs. avidity. J. Cell. Biochem. 61, 554–661 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. van Kooyk, Y. & Figdor, C. G. Signalling and adhesive properties of the integrin leucocyte function-associated antigen 1 (LFA-1). Biochem. Soc. Trans. 25, 515–520 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Boise, L. H. et al. CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL . Immunity 3, 87–98 (1995).

    Article  CAS  PubMed  Google Scholar 

  17. Shapiro, V. S., Mollenauer, M. N. & Weiss, A. Nuclear factor of activated T cells and AP-1 are insufficient for IL-2 promoter activation: requirement for CD28 up-regulation of RE/AP. J. Immunol. 161, 6455–6458 (1998).

    CAS  PubMed  Google Scholar 

  18. Davis, M. M., Chien, Y. H., Gascoigne, N. R. & Hedrick, S. M. A murine T cell receptor gene complex: isolation, structure and rearrangement. Immunol. Rev. 81, 235–258 (1984).

    Article  CAS  PubMed  Google Scholar 

  19. Lo, D., Ron, Y. & Sprent, J. Induction of MHC-restricted specificity and tolerance in the thymus. Immunol. Res. 5, 221–232 (1986).

    Article  CAS  PubMed  Google Scholar 

  20. Goldrath, A. W. & Bevan, M. J. Selecting and maintaining a diverse T-cell repertoire. Nature 402, 255–262 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Tanchot, C., Lemonnier, F. A., Pérarnau, B., Freitas, A. A. & Rocha, B. Differential requirements for survival and proliferation of CD8 naïve or memory T cells. Science 276, 2057–2062 (1997).

    Article  CAS  PubMed  Google Scholar 

  22. Takeda, S., Rodewald, H. R., Arakawa, H., Bluethmann, H. & Shimizu, T. MHC class II molecules are not required for survival of newly generated CD4+ T cells, but affect their long-term life span. Immunity 5, 217–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Brocker, T. Survival of mature CD4 T lymphocytes is dependent on major histocompatibility complex class II-expressing dendritic cells. J. Exp. Med. 186, 1223–1232 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rooke, R., Waltzinger, C., Benoist, C. & Mathis, D. Targeted complementation of MHC class II deficiency by intrathymic delivery of recombinant adenoviruses. Immunity 7, 123–134 (1997).

    Article  CAS  PubMed  Google Scholar 

  25. Motyka, B. & Teh, H. S. Naturally occurring low affinity peptide-MHC class I ligands can mediate negative selection and T cell activation. J. Immunol. 160, 77–86 (1998).

    CAS  PubMed  Google Scholar 

  26. Williams, C. B., Engle, D. L., Kersh, G. J., Michael White, J. & Allen, P. M. A kinetic threshold between negative and positive selection based on the longevity of the T cell receptor-ligand complex. J. Exp. Med. 189, 1531–1544 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berg, L. J. et al. Antigen/MHC-specific T cells are preferentially exported from the thymus in the presence of their MHC ligand. Cell 58, 1035–1046 (1989).

    Article  CAS  PubMed  Google Scholar 

  28. Seder, R. A., Paul, W. E., Davis, M. M. & Fazekas de St. Groth, B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J. Exp. Med. 176, 1091–1098 (1992).

    Article  CAS  PubMed  Google Scholar 

  29. Wülfing, C., Sjaastad, M. D. & Davis, M. M. Visualizing the dynamics of T cell activation: ICAM-1 migrates rapidly to the T cell:B cell interface and acts to sustain calcium levels. Proc. Natl Acad. Sci. USA 95, 6302–6307 (1998).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Wubbolts, R. et al. Direct vesicular transport of MHC class II molecules from lysosomal structures to the cell surface. J. Cell Biol. 135, 611–622 (1996).

    Article  CAS  PubMed  Google Scholar 

  31. Reay, P. A., Kantor, R. M. & Davis, M. M. Use of global amino acid replacements to define the requirements for MHC binding and T cell recognition of moth cytochrome c (93–103). J. Immunol. 152, 3946–3957 (1994).

    CAS  PubMed  Google Scholar 

  32. Lyons, D. S. et al. A T cell receptor binds to antagonist ligands with lower affinities and faster dissociation rates than to agonists. Immunity 5, 53–61 (1996).

    Article  CAS  PubMed  Google Scholar 

  33. Wülfing, C. et al. Kinetics and extent of T cell activation as measured with the calcium signal. J. Exp. Med. 185, 1815–1825 (1997).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Valitutti, S., Dessing, M., Aktories, K., Gallati, H. & Lanzavecchia, A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J. Exp. Med. 181, 577–584 (1995).

    Article  CAS  PubMed  Google Scholar 

  35. Holsinger, L. J. et al. Defects in actin-cap formation in Vav-deficient mice implicate an actin requirement for lymphocyte signal transduction. Curr. Biol. 8, 563–572 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Konig, R., Huang, L. Y. & Germain, R. N. MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature 356, 796–798 (1992).

    Article  CAS  PubMed  Google Scholar 

  37. Cammarota, G. et al. Identification of a CD4 binding site on the β2 domain of HLA-DR molecules. Nature 356, 799–801 (1992).

    Article  CAS  PubMed  Google Scholar 

  38. Jorgensen, J. L., Esser, U., Fazekas de St. Groth, B., Reay, P. A. & Davis, M. M. Mapping T-cell receptor-peptide contacts by variant peptide immunization of single-chain transgenics. Nature 355, 224–230 (1992).

    Article  CAS  PubMed  Google Scholar 

  39. Glimcher, L. H. & Kara, C. J. Sequences and factors: a guide to MHC class-II transcription. Annu. Rev. Immunol. 10, 13–49 (1992).

    Article  CAS  PubMed  Google Scholar 

  40. Mach, B., Steimle, V., Martinez-Soria, E. & Reith, W. Regulation of MHC class II genes: lessons from a disease. Annu. Rev. Immunol. 14, 301–331 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Jung, P. & Wiesenfeld, K. Too quiet to hear a whisper. Nature 385, 291 (1997).

    Article  CAS  PubMed  Google Scholar 

  42. Davis, S. J. & van der Merwe, P.A. The structure and ligand interactions of CD2: implications for T-cell function. Immunol. Today 17 177–187 (1996).

    Article  CAS  PubMed  Google Scholar 

  43. Al-Alwan, M. M., Rowden, G., Lee, T. D. & West, K. A. The dendritic cell cytoskeleton is critical for the formation of the immunological synapse. J. Immunol. 166, 1452–1456 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Manning, T. C. et al. Alanine scanning mutagenesis of an αβ T cell receptor: mapping the energy of antigen recognition. Immunity 8, 413–425 (1998).

    Article  CAS  PubMed  Google Scholar 

  45. Sandberg, J. K., Kärre, K. & Glas, R. Recognition of the major histocompatibility complex restriction element modulates CD8(+) T cell specificity and compensates for loss of T cell receptor contacts with the specific peptide. J. Exp. Med. 189, 883–894 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Anderson, M. T. et al. Simultaneous fluorescence-activated cell sorter analysis of two distinct transcriptional elements within a single cell using engineered green fluorescent proteins. Proc. Natl Acad. Sci. USA 93, 8508–8011 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wettstein, D. A., Boniface, J. J., Reay, P. A., Schild, H. & Davis, M. M. Expression of a class II major histocompatibility complex (MHC) heterodimer in a lipid-linked form with enhanced peptide/soluble MHC complex formation at low pH. J. Exp. Med. 174, 219–228 (1991).

    Article  CAS  PubMed  Google Scholar 

  48. Yelon, D., Schaefer, K. L. & Berg, L. J. Alterations in CD4-binding regions of the MHC class II molecule I-Ek do not impede CD4+ T cell development. J. Immunol. 162, 1348–1358 (1999).

    CAS  PubMed  Google Scholar 

  49. Riberdy, J. M., Mostaghel, E. & Doyle, C. Disruption of the CD4-major histocompatibility complex class II interaction blocks the development of CD4(+) T cells in vivo. Proc. Natl Acad. Sci. USA 95, 4493–4498 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Mostaghel, E. A., Riberdy, J. M., Steeber, D. A. & Doyle, C. Coreceptor-independent T cell activation in mice expressing MHC class II molecules mutated in the CD4 binding domain. J. Immunol. 161, 6559–6566 (1998).

    CAS  PubMed  Google Scholar 

  51. Gilfillan, S., Shen, X. & König, R. Selection and function of CD4+ T lymphocytes in transgenic mice expressing mutant MHC class II molecules deficient in their interaction with CD4. J. Immunol. 161, 6629–6637 (1998).

    CAS  PubMed  Google Scholar 

  52. Baldwin, K. K., Reay, P. A., Wu, L., Farr, A. & Davis, M. M. A T cell receptor-specific blockade of positive selection. J. Exp. Med. 189, 13–24 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kimachi, K., Croft, M. & Grey, H. M. The minimal number of antigen-major histocompatibility complex class II complexes required for activation of naive and primed T cells. Eur. J. Immunol. 27, 3310–3317 (1997).

    Article  CAS  PubMed  Google Scholar 

  54. Dadaglio, G., Nelson, C. A., Deck, M. B., Petzold, S. J. & Unanue, E. R. Characterization and quantitation of peptide-MHC complexes produced from hen egg lysozyme using a monoclonal antibody. Immunity 6, 727–738 (1997).

    Article  CAS  PubMed  Google Scholar 

  55. Chan, P. Y. et al. Influence of receptor lateral mobility on adhesion strengthening between membranes containing LFA-3 and CD2. J. Cell Biol. 115, 245–255 (1991).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. F. Krummel, R. M. Kantor and N. J. Burroughs for helpful discussions. OG-gEk was a gift of E. Hailman. Supported by grants from the Howard Hughes Medical Institute and the National Institutes of Health (to M. M. D.) as well as the Cancer Research Fund of the Damon Runyon Walter Winchell Foundation (L. C. W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Davis.

Additional information

Note: Supplementary information can be found on the Nature Immunology website (http://immunology.nature.com/supp_info/).

Supplementary information

Web Movie 1.

I-Eκ accumulates at the T cell-APC interface: time lapse. The interaction of a 5C.C7 T cell with an A20.I-Eκ cell, peptide loaded with 10 µM agonist peptide, is shown. A bright field series of images has been duplicated and is overlaid with false-color encoded fluorescence information. The top panel is overlaid with a false-color representation of the intracellular calcium concentration of the T cell ranging from blue (low) to red (high calcium concentration). In the bottom panel the I-Eκ-GFP fluorescence of the B cell lymphoma is overlaid in a rainbow color scale from blue (low) to red (high GFP fluorescence). For presentation purposes the blue color has been thresholded out. The I-Eκ-GFP fluorescence has been collected in 21 z-planes, of which only the middle one is shown. The movie shows that I-Eκ-GFP accumulates at the T cell-B cell interface; the accumulation in this particular cell couple is concentrated. The movie compresses 14 min of experiment into 42 s of movie. (MOV 717 kb)

Web Movie 2.

I-Eκ accumulates at the T cell-APC interface: 3D images at selected timepoints. This is derived from the same experiment as Movie 1. A 3D reconstruction of the I-Eκ-GFP fluorescence of the A20.I-Eκ cell interacting with the 5C.C7 T cell from Movie 1 is shown at four timepoints. The position of the T cell-APC interface is visible as a flattening of the bottom left area of the A20 cells. The timepoints from top left to bottom right are: the time of the formation of the T cell-B cell interface and 3 min, 6 min and 9 min afterwards. The I-Eκ-GFP fluorescence color scale is the same as in Movie 1 but without thresholding. The 3D reconstructions are sequentially rotated in 15-degree increments around a horizontal and vertical axis. In this particular experiment the accumulation is concentrated. (MOV 1984 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wülfing, C., Sumen, C., Sjaastad, M. et al. Costimulation and endogenous MHC ligands contribute to T cell recognition. Nat Immunol 3, 42–47 (2002). https://doi.org/10.1038/ni741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing