Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases

Abstract

The intracellular signals that trigger natural cytotoxicity have not been clearly determined. The Syk and ZAP-70 tyrosine kinases are essential for cellular activation initiated by B and T cell antigen receptors and may drive natural killer (NK) cell cytotoxicity via receptors bearing immunoreceptor tyrosine-based activation motifs (ITAMs). However, we found that, unlike B and T cells, NK cells developed in Syk−/−ZAP-70−/− mice and, despite their nonfunctional ITAMs, lysed various tumor targets in vitro and eliminated tumor cells in vivo, including those without NKG2D ligands. The simultaneous inhibition of phosphotidyl inositol 3 kinase and Src kinases abrogated the cytolytic activity of Syk−/−ZAP-70−/− NK cells and strongly reduced that of wild-type NK cells. This suggests that distinct and redundant signaling pathways act synergistically to trigger natural cytotoxicity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NK cell development uncoupled from Syk and ZAP-70.
Figure 2: NK cells deficient in Syk and ZAP-70 are heterogeneous in nature.
Figure 3: Natural killing uncoupled from Syk, ZAP-70, FcRγ and CD3ζ.
Figure 4: Natural killing is independent of ITAM-bearing receptors and NKG2D.
Figure 5: Discrimination between Syk- and ZAP-70-dependent and independent receptors on NK cells.
Figure 6: Blocking Syk kinases in wild-type NK cells does not inhibit natural killing.
Figure 7: Additive roles for Syk, Src and PI3K in NK cell signaling.

Similar content being viewed by others

References

  1. Lanier, L. L. On guard-activating NK cell receptors. Nature Immunol. 2, 23–27 (2001).

    Article  CAS  Google Scholar 

  2. Moretta, A. et al. Activating receptors and coreceptors involved in human natural killer cell-mediated cytolysis. Annu. Rev. Immunol. 19, 197–223 (2001).

    Article  CAS  Google Scholar 

  3. Wu, J. et al. An activating immunoreceptor complex formed by NKG2D and DAP10. Science 285, 730–732 (1999).

    Article  CAS  Google Scholar 

  4. Bauer, S. et al. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science 285, 727–729 (1999).

    Article  CAS  Google Scholar 

  5. Cerwenka, A. et al. Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice. Immunity 12, 721–727 (2000).

    Article  CAS  Google Scholar 

  6. Diefenbach, A., Jamieson, A. M., Liu, S. D., Shastri, N. & Raulet, D. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nature Immunol. 1, 119–126 (2000).

    Article  CAS  Google Scholar 

  7. Isakov, N. Role of immunoreceptor tyrosine-based activation motif in signal transduction from antigen and Fc receptors. Adv. Immunol. 69, 183–247 (1998).

    Article  CAS  Google Scholar 

  8. Elder, M. E. et al. Human severe combined immunodeficiency due to a defect in ZAP-70, a T cell tyrosine kinase. Science 264, 1596–1601 (1994).

    Article  CAS  Google Scholar 

  9. Negishi, I. et al. Essential role for ZAP-70 in both positive and negative selection of thymocytes. Nature 376, 435–438 (1995).

    Article  CAS  Google Scholar 

  10. Kadlecek, T. A. et al. Differential requirements for ZAP-70 in TCR signaling and T cell development. J. Immunol. 161, 4688–4694 (1998).

    CAS  PubMed  Google Scholar 

  11. Turner, M. et al. Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 378, 298–302 (1995).

    Article  CAS  Google Scholar 

  12. Cheng, A. M. et al. Syk tyrosine kinase required for mouse viability and B-cell development. Nature 378, 303–306 (1995).

    Article  CAS  Google Scholar 

  13. Colucci, F. et al. Redundant role of the Syk protein tyrosine kinase in mouse NK cell differentiation. J. Immunol . 163, 1769–1774 (1999).

    CAS  PubMed  Google Scholar 

  14. Brumbaugh, K. M. et al. Functional role for Syk tyrosine kinase in natural killer cell-mediated natural cytotoxicity. J. Exp. Med. 186, 1965–1974 (1997).

    Article  CAS  Google Scholar 

  15. Turner, M., Schweighoffer, E., Colucci, F., Di Santo, J. P. & Tybulewicz, V. L. J. Tyrosine kinase Syk: essential functions for immunoreceptor signalling revealed by gene targeted mice. Immunol. Today 21, 148–154 (2000).

    Article  CAS  Google Scholar 

  16. Colucci, F. et al. Dissecting NK cell development using a novel alymphoid mouse model: investigating the role of the c-abl proto-oncogene in murine NK cell differentiation. J. Immunol. 162, 2761–2765 (1999).

    CAS  PubMed  Google Scholar 

  17. Kiessling, R., Klein, E. & Wigzell, H. “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur. J. Immunol. 5, 112–117 (1975).

    Article  CAS  Google Scholar 

  18. Tomasello, E. et al. Combined natural killer cell and dendritic cell functional deficiency in KARAP/DAP12 loss-of-function mutant mice. Immunity 13, 355–364 (2000).

    Article  CAS  Google Scholar 

  19. Shores, E. W. et al. T cell development in mice lacking all T cell receptors ζ family members. J. Exp. Med. 187, 1093–1101 (1998).

    Article  CAS  Google Scholar 

  20. Lin, S. Y., Ardouin, L., Gillet, A., Malissen, M. & Malissen, B. The single positive T cells found in CD3-ζ/η−/− mice overtly react with self-major histocompatibility complex molecules upon restoration of normal surface density of T cell receptor-CD3 complex. J. Exp. Med. 185, 707–715 (1997).

    Article  CAS  Google Scholar 

  21. Hoglund, P., Glas, R., Ohlen, C., Ljunggren, H. G. & Karre, K. Alteration of the natural killer repertoire in H-2 transgenic mice: specificity of rapid lymphoma cell clearance determined by the H-2 phenotype of the target. J. Exp. Med. 174, 327–334 (1991).

    Article  CAS  Google Scholar 

  22. Colucci, F. et al. Functional dichotomy in NK cell signaling: Vav1-dependent and independent mechanisms. J. Exp. Med. 193, 1413–1424 (2001).

    Article  CAS  Google Scholar 

  23. Idris, A. H. et al. The natural killer gene complex genetic locus Chok encodes Ly-49D, a target recognition receptor that activates natural killing. Proc. Natl Acad. Sci. USA 96, 6330–6335 (1999).

    Article  CAS  Google Scholar 

  24. Brown, M. G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

    Article  CAS  Google Scholar 

  25. Daniels, K. A. et al. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to ly49h. J. Exp. Med. 194, 29–44 (2001).

    Article  CAS  Google Scholar 

  26. Lee, S. H. et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nature Genet. 1, 42–45 (2001).

    Google Scholar 

  27. Binstadt, B. A. et al. Sequential involvement of Lck and SHP-1 with MHC-recognizing receptors on NK cells inhibits FcR-initiated tyrosine kinase activation. Immunity 5, 629–638 (1996).

    Article  CAS  Google Scholar 

  28. Bonnema, J. D., Karnitz, L. M., Schoon, R. A., Abraham, R. T. & Leibson, P. J. Fc receptor stimulation of phosphatidylinositol 3-kinase in natural killer cells is associated with protein kinase C-independent granule release and cell-mediated cytotoxicity. J. Exp. Med. 180, 1427–1435 (1994).

    Article  CAS  Google Scholar 

  29. Chu, D. H., Morita, C. T. & Weiss, A. The Syk family of protein tyrosine kinases in T-cell activation and development. Immunol. Rev. 165, 167–180 (1998).

    Article  CAS  Google Scholar 

  30. Aderem, A. & Underhill, D. Mechanisms of phagocytosis in macrophages. Annu. Rev. Immunol. 17, 593–623 (1999).

    Article  CAS  Google Scholar 

  31. Jiang, K. Pivotal role of phosphoinositide-3 kinase in regulation of cytotoxicity in natural killer cells. Nature Immunol. 1, 419–425 (2000).

    Article  CAS  Google Scholar 

  32. Mainiero, F. et al. RAC1/P38 MAPK signaling pathway controls β1 integrin-induced interleukin-8 production in human natural killer cells. Immunity 12, 7–16 (2000).

    Article  CAS  Google Scholar 

  33. Helander, T. S. et al. ICAM-2 redistributed by ezrin as a target for killer cells. Nature 382, 265–268 (1996).

    Article  CAS  Google Scholar 

  34. Spanopoulu, E. et al. Functional immunoglobulin transgenes guide ordered B-cell differentiation in Rag-1-deficient mice. Genes Dev. 8, 1030–1042 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Kadlecek and A. Weiss for the ZAP-70−/− mice; P. Love for the FcRγ−/−CD3ζ−/− mice; E. Corcuff and O. Richard for skillful help; S. Samson, C. Roth, C. Vosshenrich, D. McVicar, A. Diefenbach, D. Raulet and E. Long for constructive discussions; and G. Langsley and O. Acuto for critically reading the manuscript. Supported by grants from The Pasteur Institute, Ligue Nationale Contre le Cancer, Association pour la Recherche sur le Cancer and the Institut National de la Santé et de la Recherche Medicale (to F. C. and J. P. D.); the European Molecular Biology Organization (to E. S.); the Medical Research Council (to V. L .J .T.); the Babraham Institute (to M. T.); and the Fondation pour la Recherche Medicale to (E. T).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Colucci.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colucci, F., Schweighoffer, E., Tomasello, E. et al. Natural cytotoxicity uncoupled from the Syk and ZAP-70 intracellular kinases. Nat Immunol 3, 288–294 (2002). https://doi.org/10.1038/ni764

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni764

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing