Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling

Abstract

T cell receptor (TCR) stimulation activates the small GTPase Rap1A, which is reported to antagonize Ras signaling and induces T cell anergy. To address its role in vivo, we generated transgenic mice that constitutively expressed active Rap1A within the T cell lineage. We found that active Rap1A did not interfere with the Ras signaling pathway or antagonize T cell activation. Instead of anergy, the T lymphocytes that constitutively expressed active Rap1A showed enhanced TCR-mediated responses, both in thymocytes and mature T cells. In addition, Rap1A activation was sufficient to induce strong activation of the β1 and β2 integrins via an avidity-modulation mechanism. This shows that, far from playing an inhibitory role during T cell activation, Rap1A positively influences T cells by augmenting lymphocyte responses and directing integrin activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Generation of constitutively active Rap1A-transgenic mice.
Figure 2: Constitutively active Rap1A does not block thymocyte development or T cell maturation.
Figure 3: Erk activation is normal in V12Rap1A-transgenic T cells.
Figure 4: V12Rap1A-transgenic T cells proliferate in response to mitogenic stimulation.
Figure 5: Constitutively active Rap1A augments, not diminishes, in vivo thymocyte responses.
Figure 6: Constitutively active Rap1A enhances in vitro thymocyte and T cell responses.
Figure 7: V12Rap1A induces integrin-mediated thymocyte adhesion.
Figure 8: Constitutively active Rap1A induces avidity modulation of LFA-1.

Similar content being viewed by others

References

  1. Reedquist, K. A. & Bos, J. L. Costimulation through CD28 suppresses T cell receptor-dependent activation of the Ras-like small GTPase Rap1 in human T lymphocytes. J. Biol. Chem. 273, 4944–4949 (1998).

    Article  CAS  Google Scholar 

  2. McLeod, S. J., Ingham, R. J., Bos, J. L., Kurosaki, T. & Gold, M. R. Activation of the Rap1 GTPase by the B cell antigen receptor. J. Biol. Chem. 273, 29218–2923 (1998).

    Article  CAS  Google Scholar 

  3. Kitayama, H., Sugimoto, Y., Matsuzaki, T., Ikawa, Y. & Noda, M. A ras-related gene with transformational suppressor activity. Cell 56, 77–84 (1989).

    Article  CAS  Google Scholar 

  4. Cook, S. J., Rubinfeld, B., Albert, I. & McCormick, F. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12, 3475–3485 (1993).

    Article  CAS  Google Scholar 

  5. Zwartkruis, F. J. & Bos, J. L. Ras and Rap1: two highly related small GTPases with distinct function. Exp. Cell Res. 253, 157–165 (1999).

    Article  CAS  Google Scholar 

  6. Boussiotis, V. A., Freeman, G. J., Berezovskaya, A., Barber, D. L. & Nadler, L. M. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278, 124–128 (1997).

    Article  CAS  Google Scholar 

  7. Czyzyk, J., Leitenberg, D., Taylor, T. & Bottomly, K. Combinatorial effect of T-cell receptor ligation and CD45 isoform expression on the signaling contribution of the small GTPases Ras and Rap1. Mol. Cell. Biol. 20, 8740–8747 (2000).

    Article  CAS  Google Scholar 

  8. Carey, K. D. et al. CD28 and the tyrosine kinase lck stimulate mitogen-activated protein kinase activity in T cells via inhibition of the small G protein Rap1. Mol. Cell. Biol. 20, 8409–8419 (2000).

    Article  CAS  Google Scholar 

  9. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    Article  CAS  Google Scholar 

  10. Arai, A. et al. Rap1 Is Activated by Erythropoietin or Interleukin-3 and Is Involved in Regulation of β 1 Integrin-mediated Hematopoietic Cell Adhesion. J. Biol. Chem. 276, 10453–10462 (2001).

    Article  CAS  Google Scholar 

  11. Caron, E., Self, A. J. & Hall, A. The GTPase Rap1 controls functional activation of macrophage integrin αMβ2 by LPS and other inflammatory mediators. Curr. Biol. 10, 974–978 (2000).

    Article  CAS  Google Scholar 

  12. Katagiri, K. et al. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-OH kinase. Mol. Cell. Biol. 20, 1956–1969 (2000).

    Article  CAS  Google Scholar 

  13. Reedquist, K. A. et al. The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J. Cell. Biol. 148, 1151–1158 (2000).

    Article  CAS  Google Scholar 

  14. Tsukamoto, N., Hattori, M., Yang, H., Bos, J. L. & Minato, N. Rap1 GTPase-activating protein SPA-1 negatively regulates cell adhesion. J. Biol. Chem. 274, 18463–18469 (1999).

    Article  CAS  Google Scholar 

  15. Suga, K. et al. CD98 induces LFA-1-mediated cell adhesion in lymphoid cells via activation of Rap1. FEBS Lett. 489, 249–253 (2001).

    Article  CAS  Google Scholar 

  16. Spaargaren, M. & Bischoff, J. R. Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras, and Rap. Proc. Natl Acad. Sci. USA 91, 12609–12613 (1994).

    Article  CAS  Google Scholar 

  17. Herrmann, C., Horn, G., Spaargaren, M. & Wittinghofer, A. Differential Interaction of the Ras family GTP-binding proteins H-ras, Rap1A, and R-ras with the putative effector molecules Raf kinase and Ral-guanine nucleotide exchange factor. J. Biol. Chem. 271, 6794–6800 (1996).

    Article  CAS  Google Scholar 

  18. Zhumabekov, T., Corbella, P., Tolaini, M. & Kioussis, D. Improved version of a human CD2 minigene based vector for T cell-specific expression in transgenic mice. J. Immunol. Meth. 185, 133–140 (1995).

    Article  CAS  Google Scholar 

  19. Swan, K. A. et al. Involvement of p21ras distinguishes positive and negative selection in thymocytes. EMBO J. 14, 276–285 (1995).

    Article  CAS  Google Scholar 

  20. O'Shea, C. C., Crompton, T., Rosewell, I. R., Hayday, A. C. & Owen, M. J. Raf regulates positive selection. Eur. J. Immunol. 26, 2350–2355 (1996).

    Article  CAS  Google Scholar 

  21. Alberola-Ila, J., Forbush, K. A., Seger, R., Krebs, E. G. & Perlmutter, R. M. Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 373, 620–623 (1995).

    Article  CAS  Google Scholar 

  22. Alberola-Ila, J., Hogquist, K. A., Swan, K. A., Bevan, M. J. & Perlmutter, R. M. Positive and negative selection invoke distinct signaling pathways. J. Exp. Med. 184, 9–18 (1996).

    Article  CAS  Google Scholar 

  23. Pages, G. et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 286, 1374–1377 (1999).

    Article  CAS  Google Scholar 

  24. Swat, W., Dessing, M., von Boehmer, H. & Kisielow, P. CD69 expression during selection and maturation of CD4+CD8+ thymocytes. Eur. J. Immunol. 23, 739–746 (1993).

    Article  CAS  Google Scholar 

  25. Anderson, G., Hare, K. J., Platt, N. & Jenkinson, E. J. Discrimination between maintenance- and differentiation-inducing signals during initial and intermediate stages of positive selection. Eur. J. Immunol. 27, 1838–1842 (1997).

    Article  CAS  Google Scholar 

  26. Hare, K. J., Jenkinson, E. J. & Anderson, G. CD69 expression discriminates MHC-dependent and -independent stages of thymocyte positive selection. J. Immunol. 162, 3978–3983 (1999).

    CAS  PubMed  Google Scholar 

  27. D'Ambrosio, D., Cantrell, D. A., Frati, L., Santoni, A. & Testi, R. Involvement of p21ras activation in T cell CD69 expression. Eur. J. Immunol. 24, 616–620 (1994).

    Article  CAS  Google Scholar 

  28. Taylor-Fishwick, D. A. & Siegel, J. N. Raf-1 provides a dominant but not exclusive signal for the induction of CD69 expression on T cells. Eur. J. Immunol. 25, 3215–3221 (1995).

    Article  CAS  Google Scholar 

  29. Pircher, H., Burki, K., Lang, R., Hengartner, H. & Zinkernagel, R. M. Tolerance induction in double specific T-cell receptor transgenic mice varies with antigen. Nature 342, 559–561 (1989).

    Article  CAS  Google Scholar 

  30. Kisielow, P., Bluthmann, H., Staerz, U. D., Steinmetz, M. & von Boehmer, H. Tolerance in T-cell-receptor transgenic mice involves deletion of nonmature CD4+CD8+ thymocytes. Nature 333, 742–746 (1988).

    Article  CAS  Google Scholar 

  31. Pircher, H. et al. Tolerance induction by clonal deletion of CD4+8+ thymocytes in vitro does not require dedicated antigen-presenting cells. Eur. J. Immunol. 23, 669–674 (1993).

    Article  CAS  Google Scholar 

  32. Sebzda, E. et al. Mature T cell reactivity altered by peptide agonist that induces positive selection. J. Exp. Med. 183, 1093–104 (1996).

    Article  CAS  Google Scholar 

  33. Bachmann, M. F. et al. Distinct roles for LFA-1 and CD28 during activation of naive T cells: adhesion versus costimulation. Immunity 7, 549–557 (1997).

    Article  CAS  Google Scholar 

  34. Stewart, M. & Hogg, N. Regulation of leukocyte integrin function: affinity vs. avidity. J. Cell. Biochem. 61, 554–561 (1996).

    Article  CAS  Google Scholar 

  35. Dransfield, I., Cabanas, C., Craig, A. & Hogg, N. Divalent cation regulation of the function of the leukocyte integrin LFA-1. J. Cell. Biol. 116, 219–226 (1992).

    Article  CAS  Google Scholar 

  36. Stewart, M. P., Cabanas, C. & Hogg, N. T cell adhesion to intercellular adhesion molecule-1 (ICAM-1) is controlled by cell spreading and the activation of integrin LFA-1. J. Immunol. 156, 1810–1817 (1996).

    CAS  PubMed  Google Scholar 

  37. Schmidt, A., Caron, E. & Hall, A. Lipopolysaccharide-induced activation of β2-integrin function in macrophages requires Irak kinase activity, p38 mitogen- activated protein kinase, and the Rap1 GTPase. Mol. Cell. Biol. 21, 438–448 (2001).

    Article  CAS  Google Scholar 

  38. Stewart, M. P., McDowall, A. & Hogg, N. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J. Cell. Biol. 140, 699–707 (1998).

    Article  CAS  Google Scholar 

  39. van Kooyk, Y., van Vliet, S. J. & Figdor, C. G. The actin cytoskeleton regulates LFA-1 ligand binding through avidity rather than affinity changes. J. Biol. Chem. 274, 26869–26877 (1999).

    Article  CAS  Google Scholar 

  40. Astoul, E., Edmunds, C., Cantrell, D. & Ward, S. Phosphoinositide 3-kinase and T lymphocyte activation: Limitations of T leukemic cell lines as signalling models. Trends Immunol. 22, 490–496 (2001).

    Article  CAS  Google Scholar 

  41. Liliental, J. et al. Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac and Cdc42 GTPases. Curr. Biol. 10, 401–404 (2000).

    Article  CAS  Google Scholar 

  42. Tissot, A. C., Ciatto, C., Mittl, P. R., Grutter, M. G. & Pluckthun, A. Viral escape at the molecular level explained by quantitative T-cell receptor/peptide/MHC interactions and the crystal structure of a peptide/MHC complex. J. Mol. Biol. 302, 873–885 (2000).

    Article  CAS  Google Scholar 

  43. Soede, R. D., Wijnands, Y. M., Van Kouteren-Cobzaru, I. & Roos, E. ZAP-70 tyrosine kinase is required for LFA-1-dependent T cell migration. J. Cell. Biol. 142, 1371–1379 (1998).

    Article  CAS  Google Scholar 

  44. Epler, J. A., Liu, R., Chung, H., Ottoson, N. C. & Shimizu, Y. Regulation of β1 integrin-mediated adhesion by T cell receptor signalling involves ZAP-70 but differs from signalling events that regulate transcriptional activity. J. Immunol. 165, 4941–4949 (2000).

    Article  CAS  Google Scholar 

  45. Woods, M. L. et al. A novel function for the Tec family tyrosine kinase Itk in activation of β 1 integrins by the T-cell receptor. EMBO J. 20, 1232–1244 (2001).

    Article  CAS  Google Scholar 

  46. Griffiths, E. K. et al. Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 293, 2260–2263 (2001).

    Article  CAS  Google Scholar 

  47. Peterson, E. J. et al. Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 293, 2263–2265 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank I. Rosewell for injection of transgenic constructs; T. Davies, P. Haskings, C. Tate and C. Young for animal care; P. Stanley for preparation of soluble mouse ICAM-1; A. Nicol, H. Hinton and P. Costello for helping with confocal microscopy; and K. Reedquist and H. Bos (Utrecht, the Netherlands) for constructs and discussions. Supported by the Imperial Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doreen Ann Cantrell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sebzda, E., Bracke, M., Tugal, T. et al. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat Immunol 3, 251–258 (2002). https://doi.org/10.1038/ni765

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni765

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing