Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

In vivo developmental stages in murine natural killer cell maturation

Abstract

Natural killer (NK) cells develop in the bone marrow, but their in vivo stages of maturation, expansion and acquisition of receptors that guide target cell specificity are not well defined. We describe here such stages of development. We also show that developing NK cells actively proliferate at a phenotypically distinguishable immature stage after they have acquired expression of Ly49 and CD94-NKG2 receptors. These studies provide a developmental framework for NK cell maturation in vivo and suggest the possible involvement of the Ly49 and CD94-NKG2 receptors themselves in modulating expansion of NK cell populations with a given NK cell receptor repertoire.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Maturation of NK cells accompanied by up-regulation of Mac-1 expression.
Figure 2: Mac-1lo NK cells are precursors of Mac-1hi NK cells and display a distinctive phenotype.
Figure 3: Ordered expression of integrins on developing NK cells.
Figure 4: Developing NK cells actively proliferate at a Mac-1lo CD43lo α2hi stage in BM.
Figure 5: Developing NK cells acquire CD94-NKG2 and Ly49 receptors at phenotypically distinctive stages.
Figure 6: Developing NK cells acquire CD94-NKG2 and Ly49 receptors before the major expansion stage.

Similar content being viewed by others

References

  1. Raulet, D.H., Vance, R.E. & McMahon, C.W. Regulation of the natural killer cell receptor repertoire. Annu. Rev. Immunol. 19, 291–330 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lanier, L.L. Face off-the interplay between activating and inhibitory immune receptors. Curr. Opin. Immunol. 13, 326–331 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Williams, N.S. et al. Natural killer cell differentiation: insights from knockout and transgenic mouse models and in vitro systems. Immunol. Rev. 165, 47–61 (1998).

    Article  CAS  PubMed  Google Scholar 

  4. Carlyle, J.R. et al. Identification of a novel developmental stage marking lineage commitment of progenitor thymocytes. J. Exp. Med. 186, 173–182 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ikawa, T., Kawamoto, H., Fujimoto, S. & Katsura, Y. Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J. Exp. Med. 190, 1617–1626 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Rosmaraki, E.E. et al. Identification of committed NK cell progenitors in adult murine bone marrow. Eur. J. Immunol. 31, 1900–1909 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Suzuki, H., Duncan, G.S., Takimoto, H. & Mak, T.W. Abnormal development of intestinal intraepithelial lymphocytes and peripheral natural killer cells in mice lacking the IL-2 receptor β chain. J. Exp. Med. 185, 499–505 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lodolce, J.P. et al. IL-15 receptor maintains lymphoid homeostasis by supporting lymphocyte homing and proliferation. Immunity 9, 669–676 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Kennedy, M.K. et al. Reversible defects in natural killer and memory CD8 T cell lineages in interleukin 15-deficient mice. J. Exp. Med. 191, 771–780 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kim, S., Iizuka, K., Aguila, H.L., Weissman, I.L. & Yokoyama, W.M. In vivo natural killer cell activities revealed by natural killer cell-deficient mice. Proc. Natl. Acad. Sci. USA 97, 2731–2736 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Williams, N.S. et al. Generation of lytic natural killer 1.1+, Ly-49 cells from multipotential murine bone marrow progenitors in a stroma-free culture: definition of cytokine requirements and developmental intermediates. J. Exp. Med. 186, 1609–1614 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Williams, N.S., Kubota, A., Bennett, M., Kumar, V. & Takei, F. Clonal analysis of NK cell development from bone marrow progenitors in vitro: orderly acquisition of receptor gene expression. Eur. J. Immunol. 30, 2074–2082 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Arase, H., Saito, T., Phillips, J.H. & Lanier, L.L. Cutting edge: the mouse NK cell-associated antigen recognized by DX5 monoclonal antibody is CD49b (α2 integrin, very late antigen-2). J. Immunol. 167, 1141–1144 (2001).

    Article  CAS  PubMed  Google Scholar 

  14. Sivakumar, P.V. et al. Cutting edge: expression of functional CD94-NKG2A inhibitory receptors on fetal NK1.1+Ly-49 cells: a possible mechanism of tolerance during NK cell development. J. Immunol. 162, 6976–6980 (1999).

    CAS  PubMed  Google Scholar 

  15. Salcedo, M. et al. Role of Qa-1(b)-binding receptors in the specificity of developing NK cells. Eur. J. Immunol. 30, 1094–1101 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Dorfman, J.R. & Raulet, D.H. Acquisition of Ly49 receptor expression by developing natural killer cells. J. Exp. Med. 187, 609–618 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Smith, H.R. et al. Nonstochastic coexpression of activation receptors on murine natural killer cells. J. Exp. Med. 191, 1341–1354 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Roth, C., Carlyle, J.R., Takizawa, H. & Raulet, D.H. Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC. Immunity 13, 143–153 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Raulet, D.H. et al. Specificity, tolerance and developmental regulation of natural killer cells defined by expression of class I-specific Ly49 receptors. Immunol. Rev. 155, 41–52 (1997).

    Article  CAS  PubMed  Google Scholar 

  20. Trinchieri, G. Biology of natural killer cells. Adv. Immunol. 47, 187–376 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dokun, A.O. et al. Specific and nonspecific NK cell activation during virus infection. Nature Immunol. 2, 951–956 (2001).

    Article  CAS  Google Scholar 

  22. Lanier, L.L., Phillips, J.H., Hackett, J. Jr., Tutt, M. & Kumar, V. Natural killer cells: definition of a cell type rather than a function. J. Immunol. 137, 2735–2739 (1986).

    CAS  PubMed  Google Scholar 

  23. Arroyo, A.G., Yang, J.T., Rayburn, H. & Hynes, R.O. α4 integrins regulate the proliferation/differentiation balance of multilineage hematopoietic progenitors in vivo. Immunity 11, 555–566 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Shimizu, Y., Rose, D.M. & Ginsberg, M.H. Integrins in the immune system. Adv. Immunol. 72, 325–380 (1999).

    Article  CAS  PubMed  Google Scholar 

  25. Schmeissner, P.J., Xie, H., Smilenov, L.B., Shu, F. & Marcantonio, E.E. Integrin functions play a key role in the differentiation of thymocytes in vivo. J. Immunol. 167, 3715–3724 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Sato, H. et al. Induction of differentiation of pre-NKT cells to mature Vα14 NKT cells by granulocyte/macrophage colony-stimulating factor. Proc. Natl. Acad. Sci. USA 96, 7439–7444 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Brown, M.G. et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science 292, 934–937 (2001).

    Article  CAS  PubMed  Google Scholar 

  28. Lee, S.H. et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C-type lectin superfamily. Nature Genet. 28, 42–45 (2001).

    CAS  PubMed  Google Scholar 

  29. Daniels, K.A. et al. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49h. J. Exp. Med. 194, 29–44 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Biron, C.A., Turgiss, L.R. & Welsh, R.M. Increase in NK cell number and turnover rate during acute viral infection. J. Immunol. 131, 1539–1545 (1983).

    CAS  PubMed  Google Scholar 

  31. Welsh, R.M., Brubaker, J.O., Vargas-Cortes, M. & O'Donnell, C.L. Natural killer (NK) cell response to virus infections in mice with severe combined immunodeficiency. The stimulation of NK cells and the NK cell-dependent control of virus infections occur independently of T and B cell function. J. Exp. Med. 173, 1053–1063 (1991).

    Article  CAS  PubMed  Google Scholar 

  32. Loza, M.J. & Perussia, B. Final steps of natural killer cell maturation: a model for type 1-type 2 differentiation? Nature Immunol. 2, 917–924 (2001).

    Article  CAS  Google Scholar 

  33. Loza, M.J., Zamai, L., Azzoni, L., Rosati, E. & Perussia, B. Expression of type 1 (interferon γ) and type 2 (interleukin-13, interleukin-5) cytokines at distinct stages of natural killer cell differentiation from progenitor cells. Blood 99, 1273–1281 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Zamai, L. et al. Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J. Exp. Med. 188, 2375–2380 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hackett, J. Jr., et al. Origin and differentiation of natural killer cells. II. Functional and morphologic studies of purified NK-1.1+ cells. J. Immunol. 136, 3124–3131 (1986).

    PubMed  Google Scholar 

  36. Puzanov, I.J., Bennett, M. & Kumar, V. IL-15 can substitute for the marrow microenvironment in the differentiation of natural killer cells. J. Immunol. 157, 4282–4285 (1996).

    CAS  PubMed  Google Scholar 

  37. Giancotti, F.G. & Ruoslahti, E. Integrin signaling. Science 285, 1028–1032 (1999).

    Article  CAS  PubMed  Google Scholar 

  38. Williams, N.S. et al. Differentiation of NK1.1+, Ly49+ NK cells from flt3+ multipotent marrow progenitor cells. J. Immunol. 163, 2648–2656 (1999).

    CAS  PubMed  Google Scholar 

  39. Iizuka, K. et al. Requirement for membrane lymphotoxin in natural killer cell development. Proc. Natl. Acad. Sci. USA 96, 6336–6340 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Idris, A.H. et al. The natural killer cell complex genetic locus, Chok, encodes Ly49D, a target recognition receptor that activates natural killing. Proc. Natl. Acad. Sci. USA 96, 6330–6335 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mason, L.H. et al. Cloning and functional characteristics of murine large granular lymphocyte-1: a member of the Ly-49 gene family (Ly-49G2). J. Exp. Med. 182, 293–303 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Howard Hughes Medical Institute, Barnes-Jewish Hospital Foundation and NIH grants to W. M. Y. We thank M. Colonna and E. Ho for critical reading of this manuscript and Y.-J. Song, D. Higuchi, K. Marlotte, and J. Laurent for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wayne M. Yokoyama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S., Iizuka, K., Kang, HS. et al. In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 3, 523–528 (2002). https://doi.org/10.1038/ni796

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni796

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing