Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Paneth cell trypsin is the processing enzyme for human defensin-5

Abstract

The antimicrobial peptide human α-defensin 5 (HD5) is expressed in Paneth cells, secretory epithelial cells in the small intestine. Unlike other characterized defensins, HD5 is stored in secretory vesicles as a propeptide. The storage quantities of HD5 are 90–450 μg per cm2 of mucosal surface area, which is sufficient to generate microbicidal concentrations in the intestinal lumen. HD5 peptides isolated from the intestinal lumen are proteolytically processed forms—HD5(56–94) and HD5(63–94)—that are cleaved at the Arg55-Ala56 and Arg62-Thr63 sites, respectively. We show here that a specific pattern of trypsin isozymes is expressed in Paneth cells, that trypsin colocalizes with HD5 and that this protease can efficiently cleave HD5 propeptide to forms identical to those isolated in vivo. By acting as a prodefensin convertase in human Paneth cells, trypsin is involved in the regulation of innate immunity in the small intestine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Analysis of tissue and lumenal forms of HD5.
Figure 2: Primary structure of preproHD5 deduced from the cDNA sequence24.
Figure 3: Antibacterial activity of HD5 peptides.
Figure 4: In vitro cleavage of proHD5 by trypsin.
Figure 5: Expression of trypsin in Paneth cells.
Figure 6: Analysis of trypsin isoform expression in human pancreas and ileum.

Similar content being viewed by others

References

  1. Zasloff, M.A. Magainins, a class of antimicrobial peptides from Xenopus skin: Isolation, characterization of two active forms, and partial cDNA sequence of a precursor. Proc. Natl. Acad. Sci. USA 84, 5449–5453 (1987).

    Article  CAS  Google Scholar 

  2. Ouellette, A.J. et al. Developmental regulation of cryptdin, a corticostatin/defensin precursor mRNA in mouse small intestinal crypt epithelium. J. Cell. Biol. 108, 1687–1695 (1989).

    Article  CAS  Google Scholar 

  3. Diamond, G., Jones, D.E. & Bevins, C.L. Airway epithelial cells are the site of expression of a mammalian antimicrobial peptide gene. Proc. Natl. Acad. Sci. USA 90, 4596–4600 (1993).

    Article  CAS  Google Scholar 

  4. Boman, H.G. Peptide antibiotics and their role in innate immunity. Annu. Rev. Immunol. 13, 61–92 (1995).

    Article  CAS  Google Scholar 

  5. Huttner, K.M. & Bevins, C.L. Antimicrobial peptides as mediators of epithelial host defense. Pediatr. Res. 45, 785–794 (1999).

    Article  CAS  Google Scholar 

  6. Hancock, R.E. & Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 8, 402–410 (2000).

    Article  CAS  Google Scholar 

  7. Zasloff, M. Antimicrobial peptides of multicellular organisms. Nature 415, 389–395 (2002).

    Article  CAS  Google Scholar 

  8. Potten, C.S. Stem cells in gastrointestinal epithelium: numbers, characteristics and death. Phil. Trans. R. Soc. Lond. B 353, 821–830 (1998).

    Article  CAS  Google Scholar 

  9. Booth, C. & Potten, C.S. Gut instincts: thoughts on intestinal epithelial stem cells. J. Clin. Invest. 105, 1493–1499 (2000).

    Article  CAS  Google Scholar 

  10. Simon, G.L. & Gorbach, S.L. in Infections of the Gastrointestinal Tract (eds. Blaser, M. J., Smith, P. D., Ravdin, J. I., Greenberg, H. B. & Guerrant, R. L.) 53–69 (Raven Press, New York, 1995).

    Google Scholar 

  11. Ouellette, A.J. & Selsted, M.E. Paneth cell defensins: endogenous peptide components of intestinal host defense. FASEB J. 10, 1280–1289 (1996).

    Article  CAS  Google Scholar 

  12. Porter, E.M., Bevins, C.L., Ghosh, D. & Ganz, T. The multifaceted Paneth cell. Cell. Mol. Life Sci. 59, 156–170 (2002).

    Article  CAS  Google Scholar 

  13. Peeters, T. & Vantrappen, G., The Paneth cell: a source of intestinal lysozyme. Gut 16, 553–558 (1975).

    Article  CAS  Google Scholar 

  14. Harwig, S.S.L. et al. Bactericidal properties of murine intestinal phospholipase A2. J. Clin. Invest. 95, 603–610 (1995).

    Article  CAS  Google Scholar 

  15. Nevalainen, T.J., Gronroos, J.M. & Kallajoki, M. Expression of group II phospholipase A2 in the human gastrointestinal tract. Lab. Invest. 72, 201–208 (1995).

    CAS  PubMed  Google Scholar 

  16. Selsted, M.E., Miller, S.I., Henschen, A.H. & Ouellette, A.J. Enteric defensins: antibiotic peptide components of intestine host defense. J. Cell Biol. 118, 929–936 (1992).

    Article  CAS  Google Scholar 

  17. Porter, E., Liu, L., Oren, A., Anton, P. & Ganz, T. Localization of human intestinal defensin 5 in Paneth cell granules. Infect. Immun. 65, 2389–2395 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Satoh, Y., Habara, Y., Ono, K. & Kanno, T. Carbamylcholine- and catecholamine-induced intracellular calcium dynamics of epithelial cells in mouse ileal crypts. Gastroenterology 108, 1345–1356 (1995).

    Article  CAS  Google Scholar 

  19. Ayabe, T. et al. Modulation of mouse Paneth cell α-defensin secretion by mIKCa1, a Ca2+-activated, intermediate conductance potassium channel. J. Biol. Chem. 277, 3793–3800 (2002).

    Article  CAS  Google Scholar 

  20. Qu, X.D., Lloyd, K.C., Walsh, J.H. & Lehrer, R.I. Secretion of type II phospholipase A2 and cryptdin by rat small intestinal Paneth cells. Infect. Immun. 64, 5161–5165 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Ayabe, T. et al. Secretion of microbicidal α-defensins by intestinal Paneth cells in response to bacteria. Nature Immunol. 1, 113–118 (2000).

    Article  CAS  Google Scholar 

  22. Lehrer, R.I., Bevins, C.L. & Ganz, T. in Mucosal Immunology (eds. Ogra, P. L., Mestecky, J., Lamm, M. E., Strober, W. M. & Bienstock, J.) 89–99 (Academic Press, New York, 1998).

    Google Scholar 

  23. Lehrer, R.I. & Ganz, T. Defensins of vertebrate animals. Curr. Opin. Immunol. 14, 96–102 (2002).

    Article  CAS  Google Scholar 

  24. Jones, D.E. & Bevins, C.L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 267, 23216–23225 (1992).

    CAS  PubMed  Google Scholar 

  25. Putsep, K. et al. Germ-free and colonized mice generate the same products from enteric prodefensins. J. Biol. Chem. 275, 40478–40482 (2000).

    Article  CAS  Google Scholar 

  26. Ouellette, A.J. IV. Paneth cell antimicrobial peptides and the biology of the mucosal barrier. Am. J. Physiol. G 277, 257–261 (1999).

    Google Scholar 

  27. Bevins, C.L., Porter, E.M. & Ganz, T. Defensins and innate host defence of the gastrointestinal tract. Gut 45, 911–915 (1999).

    Article  CAS  Google Scholar 

  28. Valore, E.V. & Ganz, T. Posttranslational processing of defensins in immature human myeloid cells. Blood 79, 1538–1544 (1992).

    CAS  PubMed  Google Scholar 

  29. Harwig, S.S.L., Park, A.S.K. & Lehrer, R.I. Characterization of defensin precursors in mature human neutrophils. Blood 79, 1532–1537 (1992).

    CAS  PubMed  Google Scholar 

  30. Porter, E.M. et al. Isolation of human intestinal defensins from ileal neobladder urine. FEBS Lett. 434, 272–276 (1998).

    Article  CAS  Google Scholar 

  31. Cunliffe, R.N. et al. Human defensin 5 is stored in precursor form in normal Paneth cells and is expressed by some villous epithelial cells and by metaplastic Paneth cells in the colon in inflammatory bowel disease. Gut 48, 176–185 (2001).

    Article  CAS  Google Scholar 

  32. Valore, E.V., Martin, E., Harwig, S.S. & Ganz, T. Intramolecular inhibition of human defensin HNP-1 by its propiece. J. Clin. Invest. 97, 1624–1629 (1996).

    Article  CAS  Google Scholar 

  33. Wilson, C.L. et al. Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286, 113–117 (1999).

    Article  CAS  Google Scholar 

  34. Porter, E., van Dam, E., Valore, E. & Ganz, T. Broad spectrum antimicrobial activity of human intestinal defensin 5. Infect. Immun. 65, 2396–2401 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Bohe, M., Borgstrom, A., Lindstrom, C. & Ohlsson, K. Pancreatic endoproteases and pancreatic secretory trypsin inhibitor immunoreactivity in human Paneth cells. J. Clin. Pathol. 39, 786–793 (1986).

    Article  CAS  Google Scholar 

  36. Nyaruhucha, C. N., Kito, M. & Fukuoka, S. I. Identification and expression of the cDNA-encoding human mesotrypsin(ogen), an isoform of trypsin with inhibitor resistance. J. Biol. Chem. 272, 10573–10578 (1997).

    Article  CAS  Google Scholar 

  37. Chen, J. M. & Ferec, C. Genes, cloned cDNAs, and proteins of human trypsinogens and pancreatitis-associated cationic trypsinogen mutations. Pancreas 21, 57–62 (2000).

    Article  Google Scholar 

  38. Molmenti, E.P., Perlmutter, D.H. & Rubin, D.C. Cell-specific expression of α1-antitrypsin in human intestinal epithelium. J. Clin. Invest. 92, 2022–2034 (1993).

    Article  CAS  Google Scholar 

  39. Bohe, H., Bohe, M., Lundberg, E., Polling, A. & Ohlsson, K. Production and secretion of pancreatic secretory trypsin inhibitor in normal human small intestine. J. Gastroenterol. 32, 623–627 (1997).

    Article  CAS  Google Scholar 

  40. Ayabe, T. et al. Activation of Paneth cell α-defensins in mouse small intestine. J. Biol. Chem. 277, 5219–5228 (2002).

    Article  CAS  Google Scholar 

  41. Zanetti, M., Gennaro, R., Scocchi, M. & Skerlavaj, B. Structure and biology of cathelicidins. Adv. Exp. Med. Biol. 479, 203–218 (2000).

    Article  CAS  Google Scholar 

  42. Lehrer, R.I. & Ganz, T. Cathelicidins: a family of endogenous antimicrobial peptides. Curr. Opin. Hematol. 9, 18–22 (2002).

    Article  Google Scholar 

  43. Zanetti, M., Litteri, L., Gennaro, R., Horstmann, H. & Romeo, D. Bactenecins, defense polypeptides of bovine neutrophils, are generated from precursor molecules stored in the large granules. J. Cell Biol. 111, 1363–1371 (1990).

    Article  CAS  Google Scholar 

  44. Panyutich, A., Shi, J., Boutz, P.L., Zhao, C. & Ganz, T. Porcine polymorphonuclear leukocytes generate extracellular microbicidal activity by elastase-mediated activation of secreted proprotegrins. Infect. Immun. 65, 978–985 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Sorensen, O.E. et al. Human cathelicidin, hCAP-18, is processed to the antimicrobial peptide LL-37 by extracellular cleavage with proteinase 3. Blood 97, 3951–3959 (2001).

    Article  CAS  Google Scholar 

  46. Kim, H.S. et al. Pepsin-mediated processing of the cytoplasmic histone H2A to strong antimicrobial peptide buforin I. J. Immunol. 165, 3268–3274 (2000).

    Article  CAS  Google Scholar 

  47. Cho, J.H. et al. Cathepsin D produces antimicrobial peptide parasin I from histone H2A in the skin mucosa of fish. FASEB J. 30 (2002); advance online publication, January 30, 2002 (DOI 10.1096/fj.01-0736fje).

  48. Jiang, H., Wang, Y. & Kanost, M.R. Pro-phenol oxidase activating proteinase from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila easter. Proc. Natl. Acad. Sci. USA 95, 12220–12225 (1998).

    Article  CAS  Google Scholar 

  49. Ouellette, A.J., Satchell, D.P., Hsieh, M.M., Hagen, S.J. & Selsted, M.E. Characterization of luminal Paneth cell α-defensins in mouse small intestine: attenuated antimicrobial activities of peptides with truncated amino termini. J. Biol. Chem. 275, 33969–33973 (2000).

    Article  CAS  Google Scholar 

  50. Chertov, O. et al. Identification of defensin-1, defensin-2, and CAP37/azurocidin as T-cell chemoattractant proteins released from interleukin-8-stimulated neutrophils. J. Biol. Chem. 271, 2935–2940 (1996).

    Article  CAS  Google Scholar 

  51. Rowen, L., Koop, B.F. & Hood, L. The complete 685-kilobase DNA sequence of the human β T cell receptor locus. Science 272, 1755–1762 (1996).

    Article  CAS  Google Scholar 

  52. Sorsa, T. et al. Activation of type IV procollagenases by human tumor-associated trypsin-2. J. Biol. Chem. 272, 21067–21074 (1997).

    Article  CAS  Google Scholar 

  53. Koshikawa, N. et al. Expression of trypsin by epithelial cells of various tissues, leukocytes, and neurons in human and mouse. Am. J. Pathol. 153, 937–944 (1998).

    Article  CAS  Google Scholar 

  54. Paju, A. et al. Expression and characterization of trypsinogen produced in the human male genital tract. Am. J. Pathol. 157, 2011–2021 (2000).

    Article  CAS  Google Scholar 

  55. Alm, A.-K., Gagnemo-Persson, R., Sorsa, T. & Sundelin, J. Extrapancreatic trypsin-2 cleaves proteinase-activated receptor-2. Biochem. Biophys. Res. Commun. 275, 77–83 (2000).

    Article  CAS  Google Scholar 

  56. Dery, O., Corvera, C.U., Steinhoff, M. & Bunnett, N.W. Proteinase-activated receptors: novel mechanisms of signaling by serine proteases. Am. J. Physiol. C 274, 1429–1452 (1998).

    Article  Google Scholar 

  57. Kong, W. et al. Luminal trypsin may regulate enterocytes through proteinase-activated receptor 2. Proc. Natl. Acad. Sci. USA 94, 8884–8889 (1997).

    Article  CAS  Google Scholar 

  58. Kawabata, A. et al. The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection. J. Clin. Invest. 107, 1443–1450 (2001).

    Article  CAS  Google Scholar 

  59. Danahay, H., Withey, L., Poll, C.T., van de Graaf, S. F. & Bridges, R. J. Protease-activated receptor-2-mediated inhibition of ion transport in human bronchial epithelial cells. Am. J. Physiol. Cell Physiol. C 280, 1455–1464 (2001).

    Article  Google Scholar 

  60. Belham, C.M. et al. Trypsin stimulates proteinase-activated receptor-2-dependent and -independent activation of mitogen-activated protein kinases. Biochem. J. 320, 939–946 (1996).

    Article  CAS  Google Scholar 

  61. Kanke, T. et al. Proteinase-activated receptor-2-mediated activation of stress-activated protein kinases and inhibitory κB kinases in NCTC 2544 keratinocytes. J. Biol. Chem. 276, 31657–31666 (2001).

    Article  CAS  Google Scholar 

  62. Youngman, K.R. et al. Localization of intestinal interleukin-1 activity and protein and gene expression to lamina propria cells. Gastroenterology 104, 749–758 (1993).

    Article  CAS  Google Scholar 

  63. Schagger, H. & von Jagow, G. Tricine-SDS-polyacyrlamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal. Biochem. 166, 368–379 (1987).

    Article  CAS  Google Scholar 

  64. Bevins, C.L. & Diamond, G. in Methods in Molecular Biology: antibacterial peptide protocols Vol. 78 (ed. Schafer,W.M.) 151–166 (Humana Press, Totowa, NJ, 1997).

    Book  Google Scholar 

  65. Borson, N.D. A lock-docking oligo(dT) primer for 5′ and 3′ RACE PCR. PCR Meth. Appl. 2, 144–148 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the CCF Center for Inflammatory Bowel Diseases—especially B. Lashner, J.-P. Achkar, V. Fazio and S. Strong—for obtaining tissue specimens used in this study. Some tissue samples were provided by the Cooperative Human Tissue Network, which is funded by the National Cancer Institute. We thank J. S. Lee and W. Wu for excellent assistance, and members of the Ganz and Bevins laboratories and K. Singh Aulak for helpful discussions. Supported by grants from the NIH (AI32738 to C. L. B., HL46809 to T. G. and EY06603 to J. W. C.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles L. Bevins.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghosh, D., Porter, E., Shen, B. et al. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol 3, 583–590 (2002). https://doi.org/10.1038/ni797

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni797

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing