Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis

Abstract

Bak and Bax are required and redundant regulators of an intrinsic mitochondrial cell death pathway. To analyze this pathway in T cell development and homeostasis, we reconstituted mice with Bak−/−Bax−/− hematopoietic cells. We found that the development and selection of Bak−/−Bax−/− thymocytes was disrupted, with altered representation of thymic subsets and resistance to both death-by-neglect and antigen receptor–induced apoptosis. Elimination of Bak−/−Bax−/− T cells that responded to endogenous superantigen was also reduced. Despite more efficient early reconstitution and apoptotic resistance of Bak−/−Bax−/− thymocytes, thymic cellularity declined over time. Reduced thymic cellularity resulted from a progressive cessation of thymopoiesis. However, animals developed splenomegaly as a result of accumulated memory T cells that were not deleted after antigen-driven expansion. These data indicate that Bak and Bax are required for thymic selection and peripheral lymphoid homeostasis and suggest that thymopoiesis can be negatively regulated by the accumulation of cells that would normally be eliminated by pro-apoptotic Bcl-2–related genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Thymic development in Bak−/−Bax−/− mice.
Figure 2: Effects of Bak−/−Bax−/− bone marrow reconstitution on thymus and spleen cellularity.
Figure 3: Thymic development in mice reconstituted with Bak−/−Bax−/− bone marrow.
Figure 4: Susceptibility of Bak−/−Bax−/− thymocytes to apoptosis.
Figure 5: Negative selection in the absence of Bak and Bax.
Figure 6: Phenotype of thymocytes from Bak−/−Bax−/−–reconstituted mice.
Figure 7: Effects of Bak−/−Bax−/− bone marrow reconstitution on thymopoiesis.
Figure 8: Phenotype of Bak−/−Bax−/− T cells in peripheral lymphoid organs.
Figure 9: Response of Bak−/−Bax−/− T cells to immunization with SEB.

Similar content being viewed by others

References

  1. Marrack, P. et al. Homeostasis of αβ TCR+ T cells. Nature Immunol. 1, 107–111 (2000).

    Article  CAS  Google Scholar 

  2. Van Parijs, L., Biuckians, A. & Abbas, A.K. Functional roles of Fas and Bcl-2-regulated apoptosis of T lymphocytes. J. Immunol. 160, 2065–2071 (1998).

    CAS  PubMed  Google Scholar 

  3. Vander Heiden, M.G., Chandel, N.S., Schumacker, P.T. & Thompson, C.B. Bcl-xLprevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol. Cell 3, 159–167 (1999).

    Article  CAS  Google Scholar 

  4. Grillot, D.A., Merino, R. & Nunez, G. Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J. Exp. Med. 182, 1973–1983 (1995).

    Article  CAS  Google Scholar 

  5. Chao, D.T. et al. Bcl-xL and Bcl-2 repress a common pathway of cell death. J. Exp. Med. 182, 821–828 (1995).

    Article  CAS  Google Scholar 

  6. Rathmell, J.C., Vander Heiden, M.G., Harris, M.H., Frauwirth, K.A. & Thompson, C.B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683–692 (2000).

    Article  CAS  Google Scholar 

  7. Veis, D.J., Sorenson, C.M., Shutter, J.R. & Korsmeyer, S.J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75, 229–240 (1993).

    Article  CAS  Google Scholar 

  8. Motoyama, N. et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267, 1506–1510 (1995).

    Article  CAS  Google Scholar 

  9. Brady, H.J., Gil-Gomez, G., Kirberg, J. & Berns, A.J. Bax α perturbs T cell development and affects cell cycle entry of T cells. EMBO J. 15, 6991–7001 (1996).

    Article  CAS  Google Scholar 

  10. O'Connor, L. et al. Bim: a novel member of the Bcl-2 family that promotes apoptosis. EMBO J. 17, 384–395 (1998).

    Article  CAS  Google Scholar 

  11. Bouillet, P. et al. Proapoptotic Bcl-2 relative Bim required for certain apoptotic responses, leukocyte homeostasis, and to preclude autoimmunity. Science 286, 1735–1738 (1999).

    Article  CAS  Google Scholar 

  12. Bouillet, P. et al. BH3-only Bcl-2 family member Bim is required for apoptosis of autoreactive thymocytes. Nature 415, 922–926 (2002).

    Article  CAS  Google Scholar 

  13. Knudson, C.M., Tung, K.S., Tourttellotte, W.G., Brown, G.A. & Korsmeyer, S.J. Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270, 96–99 (1995).

    Article  CAS  Google Scholar 

  14. Lindsten, T. et al. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell 6, 1389–1399 (2000).

    Article  CAS  Google Scholar 

  15. Wei, M.C. et al. tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev. 14, 2060–2071 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Cheng, E.H.-Y. et al. BCL-2, BCL-xL sequester BH3 domain-only molecules preventing BAX- and BAK-mediated mitochondrial apoptosis. Mol. Cell 8, 705–711 (2001).

    Article  CAS  Google Scholar 

  17. Zong, W.X., Lindsten, T., Ross, A.J., MacGregor, G.R. & Thompson, C.B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15, 1481–1486 (2001).

    Article  CAS  Google Scholar 

  18. Sebzda, E. et al. Selection of the T cell repertoire. Annu. Rev. Immunol. 17, 829–874 (1999).

    Article  CAS  Google Scholar 

  19. Baird, A.M., Gerstein, R.M. & Berg, L.J. The role of cytokine receptor signaling in lymphocyte development. Curr. Opin. Immunol. 11, 157–166 (1999).

    Article  CAS  Google Scholar 

  20. Wei, M.C. et al. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292, 727–730 (2001).

    Article  CAS  Google Scholar 

  21. Peterson, D.O., Kriz, K.G., Marich, J.E. & Toohey, M.G. Sequence organization and molecular cloning of mouse mammary tumor virus DNA endogenous to C57BL/6 mice. J. Virol. 54, 525–531 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gollob, K.J. & Palmer, E. Divergent viral superantigens delete Vβ5+ T lymphocytes. Proc. Natl. Acad. Sci. USA 89, 5138–5141 (1992).

    Article  CAS  Google Scholar 

  23. Fink, P., Fang, C.A. & Turk, G.L. The induction of peripheral tolerance by the chronic activation and deletion of CD4+Vβ5+ cells. J. Immunol. 152, 4270–4281 (1994).

    CAS  PubMed  Google Scholar 

  24. Zuniga-Pflucker, J.C. & Lenardo, M.J. Regulation of thymocyte development from immature progenitors. Curr. Opin. Immunol. 8, 215–224 (1996).

    Article  CAS  Google Scholar 

  25. Weist, D.L., Berger, M.A. & Carleton, M. Control of early thymocyte development by the pre-T cell receptor complex: A receptor without a ligand? Semin. Immunol. 11, 251–262 (1999).

    Article  Google Scholar 

  26. Huesmann, M., Scott, B., Kisielow, P. & von Boehmer, H. Kinetics and efficacy of positive selection in the thymus of normal and T cell receptor transgenic mice. Cell 66, 533–540 (1991).

    Article  CAS  Google Scholar 

  27. Falk, I., Nerz, G., Haidl, I., Krotkova, A. & Eichmann, K. Immature thymocytes that fail to express TCRβ and/or TCRγδ proteins die by apoptotic cell death in the CD44CD25 (DN4) subset. Eur. J. Immunol. 31, 3308–3317 (2001).

    Article  CAS  Google Scholar 

  28. Sentman, C.L., Shutter, J.R., Hockenbery, D., Kanagawa, O. & Korsmeyer, S.J. Bcl-2 inhibits multiple forms of apoptosis but not negative selection in thymocytes. Cell 67, 879–888 (1991).

    Article  CAS  Google Scholar 

  29. Strasser, A., Harris, A.W. & Cory, S. Bcl-2 transgene inhibits T cell death and perturbs thymic self–censorship. Cell 67, 889–899 (1991).

    Article  CAS  Google Scholar 

  30. Siegal, R.M. et al. Inhibition of thymocyte apoptosis and negative antigenic selection in bcl-2 transgenic mice. Proc. Natl. Acad. Sci. USA 89, 7003–7007 (1992).

    Article  Google Scholar 

  31. Strasser, A., Harris, A.W., Von Boehmer, H. & Cory, S. Positive and negative selection of T cells in T-cell receptor transgenic mice expressing a bcl-2 transgene. Proc. Natl. Acad. Sci. USA 91, 1376–1380 (1994).

    Article  CAS  Google Scholar 

  32. Williams, O., Norton, T., Halligey, M., Kioussis, D. & Brady, H.J.M. The action of Bax and Bcl-2 on T cell selection. J. Exp. Med. 188, 1125–1133 (1998).

    Article  CAS  Google Scholar 

  33. McGargill, M.A. & Hogquist, K.A. Antigen-induced coreceptor down-regulation on thymocytes is not a result of apoptosis. J. Immunol. 162, 1237–1245 (1999).

    CAS  PubMed  Google Scholar 

  34. Gao, J.-X. et al. Perinatal blockade of B7-1 and B7-2 inhibits clonal deletion of highly pathogenic autoreactive T cells. J. Exp. Med. 195, 959–971 (2002).

    Article  CAS  Google Scholar 

  35. Linette, G.P., Li, Y., Roth, K. & Korsmeyer, S.J. Cross talk between cell death and cell cycle progression: BCL-2 regulates NFAT-mediated activation. Proc. Natl. Acad. Sci USA 93, 9545–9552 (1996).

    Article  CAS  Google Scholar 

  36. Mazel, S., Burtrum, D. & Petrie, H.T. Regulation of cell division cycle progression by bcl-2 expression: A potential mechanism for inhibition of programmed cell death. J. Exp. Med. 183, 2219–2226 (1996).

    Article  CAS  Google Scholar 

  37. O'Reilly, L.A., Huang, D.C.S. & Strasser, A. The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J. 15, 6979–6990 (1996).

    Article  CAS  Google Scholar 

  38. Willerford, D.M. et al. Interleukin-2 receptor α chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3, 521–530 (1995).

    Article  CAS  Google Scholar 

  39. Tivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  Google Scholar 

  40. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270, 985–988 (1995).

    Article  CAS  Google Scholar 

  41. Chambers, C.A., Cado, D., Truong, T. & Allison, J.P. Thymocyte development is normal in CTLA-4-deficient mice. Proc. Natl. Acad. Sci. USA 94, 9296–9301 (1997).

    Article  CAS  Google Scholar 

  42. Kitchen, S.G., Killian, S., Giorgi, J.V. & Zack, J.A. Functional reconstitution of thymopoiesis after human immunodeficiency virus infection. J. Virol. 74, 2943–2948 (2000).

    Article  CAS  Google Scholar 

  43. Markert, M.L. et al. Thymopoiesis in HIV-infected adults after highly active antiretroviral therapy. AIDS Res. Hum. Retroviruses 17, 1635–1643 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. R. Plas and K. A. Frauwirth for helpful discussions. Supported by the Irvington Institute for Immunological Research (to J. C. R.), the Cancer Research Institute (to W. X. Z.) and the National Cancer Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig B. Thompson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rathmell, J., Lindsten, T., Zong, WX. et al. Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol 3, 932–939 (2002). https://doi.org/10.1038/ni834

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni834

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing