Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors

Abstract

It is unclear why immunological control of HIV replication is incomplete in most infected individuals. We examined here the CD8+ T cell response to HIV-infected CD4+ T cells in rare patients with immunological control of HIV. Although high frequencies of HIV-specific CD8+ T cells were present in nonprogressors and progressors, only those of nonprogressors maintained a high proliferative capacity. This proliferation was coupled to increases in perforin expression. These results indicated that nonprogressors were differentiated by increased proliferative capacity of HIV-specific CD8+ T cells linked to enhanced effector function. In addition, the relative absence of these functions in progressors may represent a mechanism by which HIV avoids immunological control.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: HIV-specific CD8+ T cell responses.
Figure 2: Differences in HIV-specific CD8+ T cell proliferation between HLA-B*57+ LTNPs and progressors.
Figure 3: IFN-γ and perforin expression in CD8+ T cells after stimulation.
Figure 4: Perforin expression of HIV-KAF11 tetramer+CD8+ lymphocytes before and after stimulation in a representative HLA-B*57+ LTNP and two HLA-B*57+ progressors.
Figure 5: CD8+ T cell proliferation and cell cycle analysis after stimulation with anti-CD3 and anti-CD28.

Similar content being viewed by others

References

  1. McMichael, A.J. & Rowland-Jones, S.L. Cellular immune responses to HIV. Nature 410, 980–987 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. Lieberman, J., Shankar, P., Manjunath, N. & Andersson, J. Dressed to kill? A review of why antiviral CD8 T lymphocytes fail to prevent progressive immunodeficiency in HIV-1 infection. Blood 98, 1667–1677 (2001).

    Article  CAS  PubMed  Google Scholar 

  3. Goulder, P.J. et al. Novel, cross-restricted, conserved, and immunodominant cytotoxic T lymphocyte epitopes in slow progressors in HIV type 1 infection. AIDS Res. Hum. Retroviruses 12, 1691–1698 (1996).

    Article  CAS  PubMed  Google Scholar 

  4. Kaslow, R.A. et al. Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nature Med. 2, 405–411 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Carrington, M. et al. HLA and HIV-1: heterozygote advantage and B*35-Cw*04 disadvantage. Science 283, 1748–1752 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Flores-Villanueva, P.O. et al. Control of HIV-1 viremia and protection from AIDS are associated with HLA-Bw4 homozygosity. Proc. Natl. Acad. Sci. USA 98, 5140–5145 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Migueles, S.A. et al. HLA B*5701 is highly associated with restriction of virus replication in a subgroup of HIV-infected long term nonprogressors. Proc. Natl. Acad. Sci. USA. 97, 2709–2714 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Migueles, S.A. & Connors, M. Frequency and function of HIV-specific CD8+ T cells. Immunol. Lett. 79, 141–150 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Gea-Banacloche, J.C. et al. Maintenance of large numbers of virus specific CD8+ T cells in HIV infected progressors and long term nonprogressors. J. Immunol. 165, 1082–1092 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Dalod, M. et al. Broad, intense anti-human immunodeficiency virus (HIV) ex vivo CD8+ responses in HIV type 1-infected patients: comparison with anti-Epstein-Barr virus responses and changes during antiretroviral therapy. J. Virol. 73, 7108–7116 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Betts, M.R. et al. Analysis of total human immunodeficiency virus (HIV)-specific CD4+ and CD8+ T-cell responses: relationship to viral load in untreated HIV infection. J. Virol. 75, 11983–11991 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kostense, S. et al. Persistent numbers of tetramer+ CD8+ T cells, but loss of interferon-γ+ HIV-specific T cells during progression to AIDS. Blood 99, 2505–2511 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Pantaleo, G. et al. Studies in subjects with long-term nonprogressive human immunodeficiency virus infection. N. Engl. J. Med. 332, 209–216 (1995).

    Article  CAS  PubMed  Google Scholar 

  14. Strathdee, S.A. et al. Lack of consistency between five definitions of nonprogression in cohorts of HIV-infected seroconverters. AIDS 10, 959–965 (1996).

    Article  CAS  PubMed  Google Scholar 

  15. Oxenius, A. et al. Distribution of functional HIV-specific CD8 T lymphocytes between blood and secondary lymphoid organs after 8–18 months of antiretroviral therapy in acutely infected patients. AIDS 15, 1653–1656 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Gray, C.M. et al. Frequency of class I HLA-restricted anti-HIV CD8+ T cells in individuals receiving highly active antiretroviral therapy (HAART). J. Immunol. 162, 1780–1788 (1999).

    CAS  PubMed  Google Scholar 

  17. Ogg, G.S. et al. Decay kinetics of human immunodeficiency virus-specific effector cytotoxic T lymphocytes after combination antiretroviral therapy. J. Virol. 73, 797–800 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Ferrari, G. et al. Clade B-based HIV-1 vaccines elicit cross-clade cytotoxic T lymphocyte reactivities in uninfected volunteers. Proc. Natl. Acad. Sci. USA 94, 1396–1401 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Shankar, P., Xu, Z. & Lieberman, J. Viral-specific cytotoxic T lymphocytes lyse human immunodeficiency virus-infected primary T lymphocytes by the granule exocytosis pathway. Blood 94, 3084–3093 (1999).

    CAS  PubMed  Google Scholar 

  20. Hamann, D. et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186, 1407–1418 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Champagne, P. et al. Skewed maturation of memory HIV-specific CD8 T lymphocytes. Nature 410, 106–111 (2001).

    Article  CAS  PubMed  Google Scholar 

  22. Appay, V. et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nature Med. 8, 379–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Sandberg, J.K., Fast, N.M. & Nixon, D.F. Functional heterogeneity of cytokines and cytolytic effector molecules in human CD8+ T lymphocytes. J. Immunol. 167, 181–187 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Faint, J.M. et al. Memory T cells constitute a subset of the human CD8+CD45RA+ pool with distinct phenotypic and migratory characteristics. J. Immunol. 167, 212–220. (2001).

    Article  CAS  PubMed  Google Scholar 

  25. Andersson, J. et al. Perforin is not co-expressed with granzyme A within cytotoxic granules in CD8 T lymphocytes present in lymphoid tissue during chronic HIV infection. AIDS 13, 1295–1303 (1999).

    Article  CAS  PubMed  Google Scholar 

  26. Lopez Bernaldo de Quiros, J.C. et al. Resistance to replication of HIV challenge virus in SCID-Hu mice engrafted with PBMC of nonprogressors is mediated by CD8+ T cells and associated with a proliferative response to p24 antigen. J. Virol. 74, 2023–2028 (2000).

    Article  Google Scholar 

  27. Goulder, P.J. et al. Late escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nature Med. 3, 212–217 (1997).

    Article  CAS  PubMed  Google Scholar 

  28. Goulder, P.J. et al. Evolution and transmission of stable CTL escape mutations in HIV infection. Nature 412, 334–338 (2001).

    Article  CAS  PubMed  Google Scholar 

  29. Kelleher, A.D. et al. Clustered mutations in HIV-1 gag are consistently required for escape from HLA-B27-restricted cytotoxic T lymphocyte responses. J. Exp. Med. 193, 375–386 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bachmann, M.F., Barner, M., Viola, A. & Kopf, M. Distinct kinetics of cytokine production and cytolysis in effector and memory T cells after viral infection. Eur. J. Immunol. 29, 291–299 (1999).

    Article  CAS  PubMed  Google Scholar 

  31. Slifka, M.K., Rodriguez, F. & Whitton, J.L. Rapid on/off cycling of cytokine production by virus-specific CD8+ T cells. Nature 401, 76–79 (1999).

    Article  CAS  PubMed  Google Scholar 

  32. Goulder, P.J. et al. Substantial differences in specificity of HIV-specific cytotoxic T cells in acute and chronic HIV infection. J. Exp. Med. 193, 181–194 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Kaslow, R.A. et al. Polymorphisms in HLA class I genes associated with both favorable prognosis of human immunodeficiency virus (HIV) type 1 infection and positive cytotoxic T-lymphocyte responses to ALVAC-HIV recombinant canarypox vaccines. J. Virol. 75, 8681–8689 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liu, Z. et al. CD8+ T-lymphocyte activation in HIV-1 disease reflects an aspect of pathogenesis distinct from viral burden and immunodeficiency. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 18, 332–340 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Sieg, S.F., Mitchem, J.B., Bazdar, D.A. & Lederman, M.M. Close link between CD4+ and CD8+ T cell proliferation defects in patients with human immunodeficiency virus disease and relationship to extended periods of CD4+ lymphopenia. J. Infect. Dis. 185, 1401–1416 (2002).

    Article  PubMed  Google Scholar 

  36. Lewis, D.E., NgTang, D.S., Adu-Oppong, A., Schober, W. & Rodgers, J.R. Anergy and apoptosis in CD8+ T cells from HIV-infected persons. J. Immunol. 153, 412–420 (1994).

    CAS  PubMed  Google Scholar 

  37. Mueller, Y.M. et al. Increased CD95/Fas-induced apoptosis of HIV-specific CD8+ T cells. Immunity 15, 871–882 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Cannavo, G. et al. Abnormal intracellular kinetics of cell-cycle-dependent proteins in lymphocytes from patients infected with human immunodeficiency virus: a novel biologic link between immune activation, accelerated T-cell turnover, and high levels of apoptosis. Blood 97, 1756–1764 (2001).

    Article  CAS  PubMed  Google Scholar 

  39. Paiardini, M. et al. Exogenous interleukin-2 administration corrects the cell cycle perturbation of lymphocytes from human immunodeficiency virus-infected individuals. J. Virol. 75, 10843–10855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pantaleo, G., Koenig, S., Baseler, M., Lane, H.C. & Fauci, A.S. Defective clonogenic potential of CD8+ T lymphocytes in patients with AIDS. J. Immunol. 144, 1696–1704 (1990).

    CAS  PubMed  Google Scholar 

  41. Andersson, J. et al. Low levels of perforin expression in CD8+ T lymphocyte granules in lymphoid tissue during acute human immunodeficiency virus type 1 infection. J. Infect. Dis. 185, 1355–1358 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Kaech, S.M., Wherry, J. & Ahmed, R. Effector and memory T-cell differentiation: Implications for vaccine development. Nature Rev. Immunol. 2, 251–262 (2002).

    Article  CAS  Google Scholar 

  43. Imami, N. et al. Immune responses and reconstitution in HIV-1 infected individuals: impact of anti-retroviral therapy, cytokines and therapeutic vaccination. Immunol. Lett. 79, 63–76 (2001).

    Article  CAS  PubMed  Google Scholar 

  44. Lloyd, T.E. et al. Regulation of CD28 costimulation in human CD8+ T cells. J. Immunol. 158, 1551–1558 (1997).

    CAS  PubMed  Google Scholar 

  45. Otten, G.R. & Germain, R.N. Split anergy in a CD8+ T cell: receptor-dependent cytolysis in the absence of interleukin-2 production. Science 251, 1228–1231 (1991).

    Article  CAS  PubMed  Google Scholar 

  46. Hanke, T. & McMichael, A.J. The quest for an AIDS vaccine: Is the CD8+ T cell approach feasible? Nature Rev. Immunol. 2, 283–291 (2002).

    Article  Google Scholar 

  47. Cohen, O.J. et al. CXCR4 and CCR5 genetic polymorphisms in long-term nonprogressive human immunodeficiency virus infection: lack of association with mutations other than CCR5-Δ32. J. Virol. 72, 6215–6217 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Holmes, K., Fowlkes, B., Schmid, I. & Giorgi, J. in Current Protocols in Immunology Vol. 1 (eds. Coligan, J., Kruisbeek, A., Margulies, D., Sheevac, E. & Strober, W.) 5.3.1–5.3.23 (Green Publishing, New York, 1995).

    Google Scholar 

  49. Toba, K., Winton, E.F., Koike, T. & Shibata, A. Simultaneous three-color analysis of the surface phenotype and DNA-RNA quantitation using 7-amino-actinomycin D and pyronin Y. J. Immunol. Methods 182, 193–207 (1995).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank M. Alston for assistance with cell cycle analysis; M. Rust for editorial assistance; and the patients for their commitment to completion of this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Connors.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Web Fig. 1.

CD8+ T cell proliferation to HIVSF162-infected CD4+ T cells and purified peptides in an HLA-A*2+B*57+ LTNP and progressor. Pseudocolor density plots showing responses of CD3+CD8+lymphocytes of a representative LTNP (34(A)) and progressor (104(D)). (a) HIV-KAF11 and CMV-NLV9 tetramer+CD8+ T cell proliferation in response to HIV-infected CD4+ T cells. (b,c) HIV- and CMV-specific CD8+ T cell proliferative responses after stimulation with the HIV p24(163-174) KAF11 peptide (b) or the CMV pp65(495-503) NLV9 peptide (c). Numbers in quadrants indicate the percentages of gated CD3+CD8+ lymphocytes. Left margin, patient identifiers. (PDF 303 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Migueles, S., Laborico, A., Shupert, W. et al. HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nat Immunol 3, 1061–1068 (2002). https://doi.org/10.1038/ni845

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni845

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing