Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation

Abstract

How Cbl family proteins regulate T cell responses is unclear. We found that c-Cbl Cbl-b double knock-out (dKO) T cells became hyperresponsive upon anti-CD3 stimulation, even though the major T cell antigen receptor (TCR) signaling pathways were not enhanced. The dKO T cells did not down-modulate surface TCR after ligand engagement, which resulted in sustained TCR signaling. However, these cells showed normal ligand-independent TCR internalization, and trafficking of internalized TCR to the lysosome compartment after ligand engagement was reduced. These findings show that Cbl family proteins negatively regulate T cell activation by promoting clearance of engaged TCR from the cell surface, a process that is apparently essential for the termination of TCR signals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression patterns and targeting strategy for Cbl and Cblb.
Figure 2: General survey of the dKO mice.
Figure 3: Phenotypical analysis and cytokine production profiles of the dKO T cells.
Figure 4: Biochemical analysis of TCR signaling pathways in dKO T cells.
Figure 5: Analysis of TCR down-modulation in the dKO T cells.
Figure 6: Sustained activation of Erk1/2 in the dKO T cells.
Figure 7: Defective ligand-dependent intracellular retention of internalized TCR in dKO T cells.
Figure 8: Impaired lysosomal colocalization of internalized TCRs in the dKO T cells.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Weiss, A. & Littman, D.R. Signal transduction by lymphocyte antigen receptors. Cell 76, 263–274 (1994).

    Article  CAS  Google Scholar 

  2. Lanzavecchia, A. & Sallusto, F. From synapses to immunological memory: the role of sustained T cell stimulation. Curr. Opin. Immunol. 12, 92–98 (2000).

    Article  CAS  Google Scholar 

  3. Lanzavecchia, A. & Sallusto, F. Antigen decoding by T lymphocytes: from synapses to fate determination. Nature Immunol. 2, 487–492 (2001).

    Article  CAS  Google Scholar 

  4. Clements, J.L., Boerth, N.J., Lee, J.R. & Koretzky, G.A. Integration of T cell receptor-dependent signaling pathways by adapter proteins. Annu. Rev. Immunol. 17, 89–108 (1999).

    Article  CAS  Google Scholar 

  5. Tomlinson, M.G., Lin, J. & Weiss, A. Lymphocytes with a complex: adapter proteins in antigen receptor signaling. Immunol. Today 21, 584–591 (2000).

    Article  CAS  Google Scholar 

  6. Clements, J.L. et al. Requirement for the leukocyte-specific adapter protein SLP-76 for normal T cell development. Science 281, 416–419 (1998).

    Article  CAS  Google Scholar 

  7. Pivniouk, V. et al. Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 94, 229–238 (1998).

    Article  CAS  Google Scholar 

  8. Zhang, W. et al. Essential role of LAT in T cell development. Immunity 10, 323–332 (1999).

    Article  CAS  Google Scholar 

  9. Yoder, J. et al. Requirement for the SLP-76 adaptor GADS in T cell development. Science 291, 1987–1991 (2001).

    Article  CAS  Google Scholar 

  10. Gong, Q. et al. Disruption of T cell signaling networks and development by Grb2 haploid insufficiency. Nature Immunol. 2, 29–36 (2001).

    Article  CAS  Google Scholar 

  11. Lupher, M.L. Jr., Rao, N., Eck, M.J. & Band, H. The Cbl protooncoprotein: a negative regulator of immune receptor signal transduction. Immunol. Today 20, 375–382 (1999).

    Article  CAS  Google Scholar 

  12. Thien, C.B. & Langdon, W.Y. Cbl: many adaptations to regulate protein tyrosine kinases. Nature Rev. Mol. Cell Biol. 2, 294–307 (2001).

    Article  CAS  Google Scholar 

  13. Waterman, H. & Yarden, Y. Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett. 490, 142–152 (2001).

    Article  CAS  Google Scholar 

  14. Meng, W., Sawasdikosol, S., Burakoff, S.J. & Eck, M.J. Structure of the amino-terminal domain of Cbl complexed to its binding site on ZAP-70 kinase. Nature 398, 84–90 (1999).

    Article  CAS  Google Scholar 

  15. Joazeiro, C.A. et al. The tyrosine kinase negative regulator c-Cbl as a RING-type, E2-dependent ubiquitin-protein ligase. Science 286, 309–312 (1999).

    Article  CAS  Google Scholar 

  16. Levkowitz, G. et al. Ubiquitin ligase activity and tyrosine phosphorylation underlie suppression of growth factor signaling by c-Cbl/Sli-1. Mol. Cell 4, 1029–1040 (1999).

    Article  CAS  Google Scholar 

  17. Yokouchi, M. et al. Ligand-induced ubiquitination of the epidermal growth factor receptor involves the interaction of the c-Cbl RING finger and UbcH7. J. Biol. Chem. 274, 31707–31712 (1999).

    Article  CAS  Google Scholar 

  18. Zheng, N., Wang, P., Jeffrey, P.D. & Pavletich, N.P. Structure of a c-Cbl-UbcH7 complex: RING domain function in ubiquitin-protein ligases. Cell 102, 533–539 (2000).

    Article  CAS  Google Scholar 

  19. Murphy, M.A. et al. Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl–deficient mice. Mol. Cell. Biol. 18, 4872–4882 (1998).

    Article  CAS  Google Scholar 

  20. Naramura, M., Kole, H.K., Hu, R.J. & Gu, H. Altered thymic positive selection and intracellular signals in Cbl-deficient mice. Proc. Natl. Acad. Sci. USA 95, 15547–15552 (1998).

    Article  CAS  Google Scholar 

  21. Bachmaier, K. et al. Negative regulation of lymphocyte activation and autoimmunity by the molecular adaptor Cbl-b. Nature 403, 211–216 (2000).

    Article  CAS  Google Scholar 

  22. Chiang, Y.J. et al. Cbl-b regulates the CD28 dependence of T-cell activation. Nature 403, 216–220 (2000).

    Article  CAS  Google Scholar 

  23. Fang, D. & Liu, Y.C. Proteolysis-independent regulation of PI3K by Cbl-b-mediated ubiquitination in T cells. Nature Immunol. 2, 870–875 (2001).

    Article  CAS  Google Scholar 

  24. Swain, S.L. et al. Helper T-cell subsets: phenotype, function and the role of lymphokines in regulating their development. Immunol. Rev. 123, 115–144 (1991).

    Article  CAS  Google Scholar 

  25. Timmerman, L.A., Clipstone, N.A., Ho, S.N., Northrop, J.P. & Crabtree, G.R. Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383, 837–40 (1996).

    Article  CAS  Google Scholar 

  26. Liu, H., Rhodes, M., Wiest, D.L. & Vignali, D.A. On the dynamics of TCR:CD3 complex cell surface expression and down-modulation. Immunity 13, 665–675 (2000).

    Article  CAS  Google Scholar 

  27. Valitutti, S., Muller, S., Salio, M. & Lanzavecchia, A. Degradation of T cell receptor (TCR)-CD3-ζ complexes after antigenic stimulation. J. Exp. Med. 185, 1859–1864 (1997).

    Article  CAS  Google Scholar 

  28. Lippincott-Schwartz, J. et al. Brefeldin A's effects on endosomes, lysosomes, and the TGN suggest a general mechanism for regulating organelle structure and membrane traffic. Cell 67, 601–616 (1991).

    Article  CAS  Google Scholar 

  29. Lee, K.-H. et al. T cell receptor signaling precedes immunological synapse formation. Science 295, 1539–1542 (2002).

    Article  CAS  Google Scholar 

  30. Zerial, M. & McBride, H. Rab proteins as membrane organizers. Nature Rev. Mol. Cell Biol. 2, 107–117 (2001).

    Article  CAS  Google Scholar 

  31. Corvera, S. & Czech, M.P. Direct targets of phosphoinositide 3-kinase products in membrane traffic and signal transduction. Trends Cell Biol. 8, 442–446 (1998).

    Article  CAS  Google Scholar 

  32. Miyake, S. et al. The Cbl protooncogene product: from an enigmatic oncogene to center stage of signal transduction. Crit. Rev. Oncog. 8, 189–218 (1997).

    Article  CAS  Google Scholar 

  33. Fang, D. et al. Cbl-b, a RING-type E3 ubiquitin ligase, targets phosphatidylinositol 3- kinase for ubiquitination in T cells. J. Biol. Chem. 276, 4872–4878 (2001).

    Article  CAS  Google Scholar 

  34. Babst, M., Odorizzi, G., Estepa, E.J. & Emr, S.D. Mammalian tumor susceptibility gene 101 (TSG101) and the yeast homologue, Vps23p, both function in late endosomal trafficking. Traffic 1, 248–258 (2000).

    Article  CAS  Google Scholar 

  35. Wang, H.-Y. et al. Cbl Promotes Ubiquitination of the T cell receptor ζ through an adaptor function of Zap-70. J. Biol. Chem. 276, 26004–26011 (2001).

    Article  CAS  Google Scholar 

  36. Petrelli, A. et al. The endophilin-CIN85-Cbl complex mediates ligand-dependent downregulation of c-Met. Nature 416, 187–90 (2002).

    Article  CAS  Google Scholar 

  37. Soubeyran, P., Kowanetz, K., Szymkiewicz, I., Langdon, W.Y. & Dikic, I. Cbl-CIN85-endophilin complex mediates ligand-induced downregulation of EGF receptors. Nature 416, 183–187 (2002).

    Article  CAS  Google Scholar 

  38. Baker, J.E., Majeti, R., Tangye, S.G. & Weiss, A. Protein tyrosine phosphatase CD148-mediated inhibition of T-cell receptor signal transduction is associated with reduced LAT and phospholipase C-γ1 Phosphorylation. Mol. Cell. Biol. 21, 2393–2403 (2001).

    Article  CAS  Google Scholar 

  39. Takahama, Y. et al. Functional competence of T cells in the absence of glycosylphosphatidylinositol-anchored proteins caused by T cell- specific disruption of the Pig-a gene. Eur. J. Immunol. 28, 2159–2166 (1998).

    Article  CAS  Google Scholar 

  40. Coligan, J.E., Kruisbeek, A.M., Margulies, D.H., Shevach, E.M. & Strober, W. Current Protocols in Immunology (ed. Coico, R.) (John Wiley & Sons, New York, 1992).

    Google Scholar 

Download references

Acknowledgements

We thank R. N. Germain, W. E. Paul, S. K. Pierce, D. R. Littman and Y. R. Zou for critical review of the manuscript; T. Jin, J. Delon and O. Schwartz for assistance on confocal microscopy analysis; J. Takeda and C. Wilson for Lck-Cre transgenic mice. A. Weiss for anti-CD148; F. Huetz for anti-dsDNA reagents; and L. X. Zheng for 2C11. D. H. is supported by Federal funds from the NCI, NIH, under contract N01-C0-56000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Gu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Web Fig 1.

Pathology of the arteritis in the dKO mice. H&E stain of aorta in WT control (a) and dKO (b) mice. Immunohistochemistry of the dKO specimen with anti-B220 (c) and anti-CD3 (d) shows the infiltration of T but not B cells in the vascular wall. (PDF 351 kb)

Web Fig 2.

Block of TCR downmodulation on the c-Cbl–deficient CD4+ CD8+ DP thymocytes. Shown are the histograms of TCR expression on gated CD4+ CD8+ DP thymocytes from the WT and c-Cbl–deficient mice. Cells were stimulated with anti-CD3 for 4 h, and cell surface TCRs were revealed by anti-TCRβ staining. Open and shaded curves represent stimulated and nonstimulated cells, respectively. (PDF 46 kb)

Web Fig 3.

Defective ligand-dependent intracellular TCR retention in dKO T cells. Intracellular retention of internalized TCR was detected as described in Methods. Open and shaded curves represent cells before and after the acidic buffer treatment, respectively. (PDF 113 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naramura, M., Jang, IK., Kole, H. et al. c-Cbl and Cbl-b regulate T cell responsiveness by promoting ligand-induced TCR down-modulation. Nat Immunol 3, 1192–1199 (2002). https://doi.org/10.1038/ni855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing