Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CTLA-4 regulates the requirement for cytokine-induced signals in TH2 lineage commitment

Abstract

The relative importance of the cytokine milieu versus cytolytic T lymphocyte-associated antigen 4 (CTLA-4) and T cell receptor signal strength on T cell differentiation remains unclear. Here we have generated mice deficient for signal transducer and activator of transcription 6 (STAT6) and CTLA-4 to determine the role of CTLA-4 in cytokine-driven T cell differentiation. CTLA-4–deficient T cells bypass the need for STAT6 in the differentiation of T helper type 2 (TH2) cells. TH2 differentiation of cells deficient for both STAT6 and CTLA-4 is accompanied by induction of GATA-3 and the migration of TH2 cells to peripheral tissues. CTLA-4 deficiency also affects the balance of the nuclear factors NFATc1 and NFATc2, and enhances activation of NF-κB. These results suggest that CTLA-4 has a critical role in T cell differentiation and that STAT6-dependent TH2 lineage commitment and stabilization can be bypassed by increasing the strength of signaling through the T cell receptor.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: DKO T cells produce TH2 cytokines ex vivo.
Figure 2: Immunoglobulin isotype switching in DKO mice.
Figure 3: Differentiation of naive DKO CD4+ T cells in vitro.
Figure 4: Expression of GATA-3, c-maf and T-bet mRNA in DKO cells.
Figure 5: Evidence for TH2 cell differentiation and function in vivo.
Figure 6: NFAT nuclear translocation and NF-κB activation on TCR ligation in DKO T cells.

Similar content being viewed by others

References

  1. Hou, J. et al. An interleukin-4-induced transcription factor: IL-4 Stat. Science 265, 1701–1706 (1994).

    Article  CAS  Google Scholar 

  2. Quelle, F.W. et al. Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol. Cell. Biol. 15, 3336–3343 (1995).

    Article  CAS  Google Scholar 

  3. Zheng, W. & Flavell, R.A. The transcription factor GATA-3 is necessary and sufficient for Th2 cytokine gene expression in CD4 T cells. Cell 89, 587–596 (1997).

    Article  CAS  Google Scholar 

  4. Zhang, D.H., Cohn, L., Ray, P., Bottomly, K. & Ray, A. Transcription factor GATA-3 is differentially expressed in murine Th1 and Th2 cells and controls Th2-specific expression of the interleukin-5 gene. J. Biol. Chem. 272, 21597–21603 (1997).

    Article  CAS  Google Scholar 

  5. Shimoda, K. et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 380, 630–633 (1996).

    Article  CAS  Google Scholar 

  6. Takeda, K. et al. Essential role of Stat6 in IL-4 signalling. Nature 380, 627–630 (1996).

    Article  CAS  Google Scholar 

  7. Hosken, N.A., Shibuya, K., Heath, A.W., Murphy, K.M. & O'Garra, A. The effect of antigen dose on CD4+ T helper cell phenotype development in a T cell receptor-αβ-transgenic model. J. Exp. Med. 182, 1579–1584 (1995).

    Article  CAS  Google Scholar 

  8. Lenschow, D.J. et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity 5, 285–293 (1996).

    Article  CAS  Google Scholar 

  9. Rulifson, I.C., Sperling, A.I., Fields, P.E., Fitch, F.W. & Bluestone, J.A. CD28 costimulation promotes the production of Th2 cytokines. J. Immunol. 158, 658–665 (1997).

    CAS  PubMed  Google Scholar 

  10. Kato, T. & Nariuchi, H. Polarization of naive CD4+ T cells toward the Th1 subset by CTLA-4 costimulation. J. Immunol. 164, 3554–3562 (2000).

    Article  CAS  Google Scholar 

  11. Khattri, R., Auger, J.A., Griffin, M.D., Sharpe, A.H. & Bluestone, J.A. Lymphoproliferative disorder in CTLA-4 knockout mice is characterized by CD28-regulated activation of Th2 responses. J. Immunol. 162, 5784–5791 (1999).

    CAS  PubMed  Google Scholar 

  12. Oosterwegel, M.A. et al. The role of CTLA-4 in regulating Th2 differentiation. J. Immunol. 163, 2634–2639 (1999).

    CAS  PubMed  Google Scholar 

  13. Tivol, E.A. et al. Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3, 541–547 (1995).

    Article  CAS  Google Scholar 

  14. Waterhouse, P. et al. Lymphoproliferative disorders with early lethality in mice deficient in CTLA-4. Science 270, 985–988 (1995).

    Article  CAS  Google Scholar 

  15. Croft, M., Bradley, L.M. & Swain, S.L. Naive versus memory CD4 T cell response to antigen. Memory cells are less dependent on accessory cell costimulation and can respond to many antigen-presenting cell types including resting B cells. J. Immunol. 152, 2675–2685 (1994).

    CAS  PubMed  Google Scholar 

  16. London, C.A., Lodge, M.P. & Abbas, A.K. Functional responses and costimulator dependence of memory CD4+ T cells. J. Immunol. 164, 265–272 (2000).

    Article  CAS  Google Scholar 

  17. Chambers, C.A., Sullivan, T.J. & Allison, J.P. Lymphoproliferation in CTLA-4-deficient mice is mediated by costimulation-dependent activation of CD4+ T cells. Immunity 7, 885–895 (1997).

    Article  CAS  Google Scholar 

  18. Kim, J.I., Ho, I.C., Grusby, M.J. & Glimcher, L.H. The transcription factor c-Maf controls the production of interleukin-4 but not other Th2 cytokines. Immunity 10, 745–751 (1999).

    Article  CAS  Google Scholar 

  19. Grogan, J.L. et al. Early transcription and silencing of cytokine genes underlie polarization of T helper cell subsets. Immunity 14, 205–215 (2001).

    Article  CAS  Google Scholar 

  20. Mohrs, M., Shinkai, K., Mohrs, K. & Locksley, R.M. Analysis of type 2 immunity in vivo with a bicistronic IL-4 reporter. Immunity 15, 303–311 (2001).

    Article  CAS  Google Scholar 

  21. Ranger, A.M. et al. Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NF-ATc. Immunity 8, 125–134 (1998).

    Article  CAS  Google Scholar 

  22. Yoshida, H. et al. The transcription factor NF-ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 8, 115–124 (1998).

    Article  CAS  Google Scholar 

  23. Ranger, A.M., Oukka, M., Rengarajan, J. & Glimcher, L.H. Inhibitory function of two NFAT family members in lymphoid homeostasis and Th2 development. Immunity 9, 627–635 (1998).

    Article  CAS  Google Scholar 

  24. Rengarajan, J., Tang, B. & Glimcher, L.H. NFATc2 and NFATc3 regulate TH2 differentiation and modulate TCR-responsiveness of naive TH cells. Nature Immunol. 3, 48–54 (2002).

    Article  CAS  Google Scholar 

  25. Das, J. et al. A critical role for NF-κB in Gata3 expression and Th2 differentiation in allergic airway inflammation. Nature Immunol. 2, 45–50 (2001).

    Article  CAS  Google Scholar 

  26. Fraser, J.H., Rincon, M., McCoy, K.D. & Le Gros, G. CTLA4 ligation attenuates AP-1, NFAT and NF-κB activity in activated T cells. Eur. J. Immunol. 29, 838–844 (1999).

    Article  CAS  Google Scholar 

  27. Olsson, C., Riesbeck, K., Dohlsten, M., Michaelsson, E. & Riebeck, K. CTLA-4 ligation suppresses CD28-induced NF-κB and AP-1 activity in mouse T cell blasts. J. Biol. Chem. 274, 14400–14405 (1999).

    Article  CAS  Google Scholar 

  28. Wang, L.M. et al. IRS-1: essential for insulin- and IL-4-stimulated mitogenesis in hematopoietic cells. Science 261, 1591–1594 (1993).

    Article  CAS  Google Scholar 

  29. Sun, X.J. et al. Role of IRS-2 in insulin and cytokine signalling. Nature 377, 173–177 (1995).

    Article  CAS  Google Scholar 

  30. Jeppson, J.D. et al. Requirement for dual signals by anti-CD40 and IL-4 for the induction of NF-κB, IL-6, and IgE in human B lymphocytes. J. Immunol. 161, 1738–1747 (1998).

    CAS  PubMed  Google Scholar 

  31. Tinnell, S.B., Jacobs-Helber, S.M., Sterneck, E., Sawyer, S.T. & Conrad, D.H. STAT6, NF-κB and C/EBP in CD23 expression and IgE production. Int. Immunol. 10, 1529–1538 (1998).

    Article  CAS  Google Scholar 

  32. Pioli, C., Gatta, L., Ubaldi, V. & Doria, G. Inhibition of IgG1 and IgE production by stimulation of the B cell CTLA-4 receptor. J. Immunol. 165, 5530–5536 (2000).

    Article  CAS  Google Scholar 

  33. Kaplan, M.H., Schindler, U., Smiley, S.T. & Grusby, M.J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 4, 313–319 (1996).

    Article  CAS  Google Scholar 

  34. Dent, A.L., Hu-Li, J., Paul, W.E. & Staudt, L.M. T helper type 2 inflammatory disease in the absence of interleukin 4 and transcription factor STAT6. Proc. Natl. Acad. Sci. USA 95, 13823–13828 (1998).

    Article  CAS  Google Scholar 

  35. Dent, A.L., Doherty, T.M., Paul, W.E., Sher, A. & Staudt, L.M. BCL-6-deficient mice reveal an IL-4-independent, STAT6-dependent pathway that controls susceptibility to infection by Leishmania major. J. Immunol. 163, 2098–2103 (1999).

    CAS  PubMed  Google Scholar 

  36. Ouyang, W. et al. Stat6-independent GATA-3 autoactivation directs IL-4-independent Th2 development and commitment. Immunity 12, 27–37 (2000).

    Article  CAS  Google Scholar 

  37. Finkelman, F.D. et al. Stat6 regulation of in vivo IL-4 responses. J. Immunol. 164, 2303–2310 (2000).

    Article  CAS  Google Scholar 

  38. Jankovic, D. et al. Single cell analysis reveals that IL-4 receptor/Stat6 signaling is not required for the in vivo or in vitro development of CD4+ lymphocytes with a Th2 cytokine profile. J. Immunol. 164, 3047–3055 (2000).

    Article  CAS  Google Scholar 

  39. Marengere, L.E. et al. Regulation of T cell receptor signaling by tyrosine phosphatase SYP association with CTLA-4. Science 272, 1170–1173 (1996).

    Article  CAS  Google Scholar 

  40. Lee, K.M. et al. Molecular basis of T cell inactivation by CTLA-4. Science 282, 2263–2266 (1998).

    Article  CAS  Google Scholar 

  41. Rodriguez-Palmero, M., Hara, T., Thumbs, A. & Hunig, T. Triggering of T cell proliferation through CD28 induces GATA-3 and promotes T helper type 2 differentiation in vitro and in vivo. Eur. J. Immunol. 29, 3914–3924 (1999).

    Article  CAS  Google Scholar 

  42. Harlin, H. et al. CTLA-4 engagement regulates NF-κB activation in vivo. Eur. J. Immunol. 32, 2095–2104 (2002).

    Article  CAS  Google Scholar 

  43. Shen, C.H. & Stavnezer, J. Interaction of stat6 and NF-κB: direct association and synergistic activation of interleukin-4-induced transcription. Mol. Cell. Biol. 18, 3395–3404 (1998).

    Article  CAS  Google Scholar 

  44. Brogdon, J.L., Leitenberg, D. & Bottomly, K. The potency of TCR signaling differentially regulates NFATc/p activity and early IL-4 transcription in naive CD4+ T cells. J. Immunol. 168, 3825–3832 (2002).

    Article  CAS  Google Scholar 

  45. Smith, J.A., Tang, Q. & Bluestone, J.A. Partial TCR signals delivered by FcR-nonbinding anti-CD3 monoclonal antibodies differentially regulate individual Th subsets. J. Immunol. 160, 4841–4849 (1998).

    CAS  PubMed  Google Scholar 

  46. Tang, Q. et al. The Src family kinase Fyn mediates signals induced by TCR antagonists. J. Immunol. 168, 4480–4487 (2002).

    Article  CAS  Google Scholar 

  47. Salomon, B. et al. Development of spontaneous autoimmune peripheral polyneuropathy in b7-2-deficient nod mice. J. Exp. Med. 194, 677–684 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Arcella and P. Weghfart for animal care; M. Grusby for providing the STAT6−/− mice; A. Rosenberg, H. Thompson and T.S. Li for technical support; K. Shinkai and S. Chikuma for discussions; and members of the Bluestone laboratory for reading the manuscript. Supported by grants from the National Institutes of Health (Q.T) and the Juvenile Diabetes Research Foundation (H.B.J).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey A. Bluestone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bour-Jordan, H., Grogan, J., Tang, Q. et al. CTLA-4 regulates the requirement for cytokine-induced signals in TH2 lineage commitment. Nat Immunol 4, 182–188 (2003). https://doi.org/10.1038/ni884

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni884

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing