Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

PI3K and Btk differentially regulate B cell antigen receptor-mediated signal transduction

Abstract

Phosphoinositide-3 kinase (PI3K) is thought to activate the tyrosine kinase Btk. However, through analysis of PI3K−/− and Btk−/− mice, B cell antigen receptor (BCR)-induced activation of Btk in mouse B cells was found to be unaffected by PI3K inhibitors or by a lack of PI3K. Consistent with this observation, PI3K−/− Btk−/− double-deficient mice had more severe defects than either single-mutant mouse. NF-κB activation along with Bcl-xL and cyclin D2 induction were severely blocked in both PI3K−/− and Btk−/− single-deficient B cells. Transgenic expression of Bcl-xL restored the development and BCR-induced proliferation of B cells in PI3K−/− mice. Our results indicate that PI3K and Btk have unique roles in proximal BCR signaling and that they have a common target further downstream in the activation of NF-κB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The Akt, but not the Btk, pathway is dependent on PI3K in B cells.
Figure 2: Phenotypes of PI3K and Btk double-deficient mice.
Figure 3: Restoration of B cell numbers and proliferative response of PI3K−/− mice by transgenic expression of Bcl-xL.

Similar content being viewed by others

References

  1. Fruman, D.A., Meyers, R.E. & Cantley, L.C. Phosphoinositide kinases. Annu. Rev. Biochem. 67, 481–507 (1998).

    Article  CAS  Google Scholar 

  2. Katso, R. et al. Functions of phosphoinositide 3-kinases: implications for development, immunity, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 615–675 (2001).

    Article  CAS  Google Scholar 

  3. Terauchi, Y. et al. Increased insulin sensitivity and hypoglycaemia in mice lacking the p85α subunit of phosphoinositide 3-kinase. Nat. Genet. 21, 230–235 (1999).

    Article  CAS  Google Scholar 

  4. Suzuki, H. et al. Xid-like immunodeficiency in mice with disruption of the p85α subunit of phosphoinositide 3-kinase. Science 283, 390–392 (1999).

    Article  CAS  Google Scholar 

  5. Fruman, D.A. et al. Impaired B cell development and proliferation in absence of phosphoinositide 3-kinase p85α. Science 283, 393–397 (1999).

    Article  CAS  Google Scholar 

  6. Fruman, D.A., Cantley, L.C. & Carpenter, C.L. Structural organization and alternative splicing of the murine phosphoinositide 3-kinase p85α gene. Genomics 37, 113–121 (1996).

    Article  CAS  Google Scholar 

  7. Inukai, K. et al. p85α gene generates three isoforms of regulatory subunit for phosphatidylinositol 3-kinase (PI 3-Kinase), p50α, p55α, and p85α, with different PI 3-kinase activity elevating responses to insulin. J. Biol. Chem. 272, 7873–7882 (1997).

    Article  CAS  Google Scholar 

  8. Campbell, K.S. Signal transduction from the B cell antigen-receptor. Curr. Opin. Immunol. 11, 256–264 (1999).

    Article  CAS  Google Scholar 

  9. Kurosaki, T. Genetic analysis of B cell antigen receptor signaling. Annu. Rev. Immunol. 17, 555–592 (1999).

    Article  CAS  Google Scholar 

  10. Marshall, A.J., Niiro, H., Yun, T.J. & Clark, E.A. Regulation of B-cell activation and differentiation by the phosphatidylinositol 3-kinase and phospholipase Cγ pathway. Immunol. Rev. 176, 30–46 (2000).

    Article  CAS  Google Scholar 

  11. Tedder, T.F., Sato, S., Poe, J.C. & Fujimoto, M. CD19 and CD22 regulate a B lymphocyte signal transduction pathway that contributes to autoimmunity. Keio J. Med. 49, 1–13 (2000).

    Article  CAS  Google Scholar 

  12. Tsukada, S., Baba, Y. & Watanabe, D. Btk and BLNK in B cell development. Adv. Immunol. 77, 123–162 (2001).

    Article  CAS  Google Scholar 

  13. Salim, K. et al. Distinct specificity in the recognition of phosphoinositides by the pleckstrin homology domains of dynamin and Bruton's tyrosine kinase. EMBO J. 15, 6241–6250 (1996).

    Article  CAS  Google Scholar 

  14. Fukuda, M., Kojima, T., Kabayama, H. & Mikoshiba, K. Mutation of the pleckstrin homology domain of Bruton's tyrosine kinase in immunodeficiency impaired inositol 1,3,4,5-tetrakisphosphate binding capacity. J. Biol. Chem. 271, 30303–30306 (1996).

    Article  CAS  Google Scholar 

  15. Satterthwaite, A.B., Li., Z. & Witte, O.N. Btk function in B cell development and response. Semin. Immunol. 10, 309–316 (1998).

    Article  CAS  Google Scholar 

  16. Tarakhovsky, A. Xid and Xid-like immunodeficiencies from a signaling point of view. Curr. Opin. Immunol. 3, 319–323 (1997).

    Article  Google Scholar 

  17. Fu, C., Turck, C.W., Kurosaki, T. & Chan, A.C. BLNK: a central linker protein in B cell activation. Immunity 9, 93–103 (1998).

    Article  CAS  Google Scholar 

  18. Kurosaki, T. & Tsukada, S. BLNK: connecting Syk and Btk to calcium signals. Immunity 12, 1–5 (2000).

    Article  CAS  Google Scholar 

  19. Varnai, P., Rother, K.I. & Balla, T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J. Biol. Chem. 274, 10983–10989 (1999).

    Article  CAS  Google Scholar 

  20. Nore, B.F. et al. Redistribution of Bruton's tyrosine kinase by activation of phosphatidylinositol 3-kinase and Rho-family GTPases. Eur. J. Immunol. 30, 145–154 (2000).

    Article  CAS  Google Scholar 

  21. Scharenberg, A.M. et al. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 17, 1961–1972 (1998).

    Article  CAS  Google Scholar 

  22. Gold, M.R. et al. The B cell antigen receptor activates the Akt (protein kinase B)/glycogen synthase kinase-3 signaling pathway via phosphatidylinositol 3-kinase. J. Immunol. 163, 1894–1905 (1999).

    CAS  Google Scholar 

  23. Coffer, P.J., Jin, J. & Woodgett, J.R. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem. J. 335, 1–13 (1998).

    Article  CAS  Google Scholar 

  24. Datta, S.R., Brunet, A. & Greenberg, M.E. Cellular survival: a play in three Akts. Genes. Dev. 13, 2905–2927 (1999).

    Article  CAS  Google Scholar 

  25. Hemmings, B.A. Akt signaling: linking membrane events to life and death decisions. Science 275, 628–630 (1997).

    Article  CAS  Google Scholar 

  26. Franke, T.F., Kaplan, D.R. & Cantley, L.C. PI3K: downstream AKTion blocks apoptosis. Cell 88, 435–437 (1997).

    Article  CAS  Google Scholar 

  27. Burgering, B.M. & Coffer, P.J. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature 376, 599–602 (1995).

    Article  CAS  Google Scholar 

  28. Brozinick, J.T. Jr. & Birnbaum, M.J. Insulin, but not contraction, activates Akt/PKB in isolated rat skeletal muscle. J. Biol. Chem. 273, 14679–14682 (1998).

    Article  CAS  Google Scholar 

  29. Forssell, J., Nilsson, A. & Sideras, P. Reduced formation of phosphatidic acid upon B-cell receptor triggering of mouse B-lymphocytes lacking Bruton's tyrosine kinase. Scand. J. Immunol. 52, 30–38 (2000).

    Article  CAS  Google Scholar 

  30. Kane, L.P., Shapiro, V.S., Stokoe, D. & Weiss, A. Induction of NF-κB by the Akt/PKB kinase. Curr. Biol. 9, 601–604 (1999).

    Article  CAS  Google Scholar 

  31. Bajpai, U.D., Zhang, K., Teutsch, M., Sen, R. & Wortis, H.H. Bruton's tyrosine kinase links the B cell receptor to nuclear factor κB activation. J. Exp. Med. 191, 1735–1744 (2000).

    Article  CAS  Google Scholar 

  32. Petro, J.B., Rahman, S.M.J., Ballard, D.W. & Khan, W.N. Bruton's tyrosine kinase is required for activation of IκB kinase and nuclear factor κB in response to B cell receptor engagement. J. Exp. Med. 191, 1745–1754 (2000).

    Article  CAS  Google Scholar 

  33. Miyamoto, S., Schmitt, M.J. & Verma, I.M. Qualitative changes in the subunit composition of κ B-binding complexes during murine B-cell differentiation. Proc. Natl. Acad. Sci. USA 91, 5056–5060 (1994).

    Article  CAS  Google Scholar 

  34. Solvason, N. et al. Induction of cell cycle regulatory proteins in anti-immunoglobulin-stimulated mature B lymphocytes. J. Exp. Med. 184, 407–417 (1996).

    Article  CAS  Google Scholar 

  35. Anderson, J.S., Teutsch, M., Dong, Z. & Wortis, H.H. An essential role for Bruton's tyrosine kinase in the regulation of B-cell apoptosis. Proc. Natl. Acad. Sci. USA 93, 10966–10971 (1996).

    Article  CAS  Google Scholar 

  36. Solvason, N. et al. Transgene expression of bcl-xL permits anti-immunoglobulin (Ig)-induced proliferation in xid B cells. J. Exp. Med. 187, 1081–1091 (1998).

    Article  CAS  Google Scholar 

  37. Buhl, A.M. & Cambier, J.C. Phosphorylation of CD19 Y484 and Y515, and linked activation of phosphatidylinositol 3-kinase, are required for B cell antigen receptor-mediated activation of Bruton's tyrosine kinase. J. Immunol. 162, 4438–4446 (1999).

    CAS  PubMed  Google Scholar 

  38. Jou, S.T. et al. Essential, nonredundant role for the phosphoinositide 3-kinase p110δ in signaling by the B-cell receptor complex. Mol. Cell. Biol. 22, 8580–8591 (2002).

    Article  CAS  Google Scholar 

  39. Takata, M. & Kurosaki, T. A role for Bruton's tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-γ2. J. Exp. Med. 184, 31–40 (1996).

    Article  CAS  Google Scholar 

  40. Engels, N., Wollscheid, B. & Wienands, J. Association of SLP-65/BLNK with the B cell antigen receptor through a non-ITAM tyrosine of Ig-α. Eur. J. Immunol. 31, 2126–2134 (2001).

    Article  CAS  Google Scholar 

  41. Craxton, A., Jiang, A., Kurosaki, T. & Clark, E.A. Syk and Bruton's tyrosine kinase are required for B cell antigen receptor-mediated activation of the kinase Akt. J. Biol. Chem. 274, 30644–30650 (1999).

    Article  CAS  Google Scholar 

  42. Romashkova, J.A. & Makarov, S.S. NF-κB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401, 86–90 (1999).

    Article  CAS  Google Scholar 

  43. Lee, H.H., Dadgostar, H., Cheng, Q., Shu, J. & Cheng, G. NF-κB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc. Natl. Acad. Sci. USA 96, 9136–9141 (1999).

    Article  CAS  Google Scholar 

  44. Jones, R.G. et al. Protein kinase B regulates T lymphocyte survival, nuclear factor κB activation, and Bcl-X(L) levels in vivo. J. Exp. Med. 191, 1721–1734 (2000).

    Article  CAS  Google Scholar 

  45. Dillon, S.R., Mancini, M., Rosen, A. & Schlissel, M.S. Annexin V binds to viable B cells and colocalizes with a marker of lipid rafts upon B cell receptor activation. J. Immunol. 164, 1322–1332 (2000).

    Article  CAS  Google Scholar 

  46. Fukao, T. et al. Selective loss of gastrointestinal mast cells and impaired immunity in PI3K-deficient mice. Nat. Immunol. 3, 295–304 (2002).

    Article  CAS  Google Scholar 

  47. Fukao, T. et al. PI3K-mediated negative feedback regulation of IL-12 production in dendritic cells. Nat. Immunol. 3, 875–881 (2002).

    Article  CAS  Google Scholar 

  48. Grillot, D.A.M. et al. Bcl-x exhibits regulated expression during B cell development and activation and modulates lymphocyte survival in transgenic mice. J. Exp. Med. 183, 381–391 (1996).

    Article  CAS  Google Scholar 

  49. Baba, Y. et al. Involvement of Wiskott-Aldrich syndrome protein in B-cell cytoplasmic tyrosine kinase pathway. Blood 93, 2003–2012 (1999).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank N. Watanabe and M. Handa for help in some experiments; C. Maki for technical assistance; A. Sakurai, M. Motouchi and K. Furuichi for animal care; and Y. Fukui, T. Kurosaki and L.K. Clayton for suggestions and critical reading of the manuscript. This work was supported in part by a Grant-in-Aid for Creative Scientific Research (13GS0015), a Grant-in-Aid for Scientific Research (A) (13307012), (B) (14370116) and (C) (13670322), and a Grant-in-Aid for Scientific Research on Priority Areas (13037028) from the Japan Society for the Promotion of Science, a National Grant-in-Aid for the Establishment of a High-Tech Research Center in a private University, a grant for the Promotion of the Advancement of Education and Research in Graduate Schools, and a Scientific Frontier Research Grant from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shigeo Koyasu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suzuki, H., Matsuda, S., Terauchi, Y. et al. PI3K and Btk differentially regulate B cell antigen receptor-mediated signal transduction. Nat Immunol 4, 280–286 (2003). https://doi.org/10.1038/ni890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing