Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1

Abstract

The small GTPase Rap1 is a potent activator of leukocyte integrin. However, the regulatory mechanism involved is unknown. Here, we identify the Rap1 effector, RAPL, as an essential regulator in this activation. RAPL was enriched in mouse lymphoid tissues and associated with Rap1 after stimulation by the T cell receptor and with chemokine CXCL12. Human RAPL stimulated lymphocyte polarization and the patch-like redistribution of lymphocyte-function-associated antigen 1 (LFA-1) to the leading edge, resulting in enhanced adhesion to intercellular adhesion molecule 1 (ICAM-1). Triggered by activated Rap1, RAPL associated with LFA-1 and rapidly relocated to the leading edge and accumulated at immunological synapses. Thus, RAPL regulates lymphocyte adhesion through the spatial distribution of LFA-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RAPL amino acid sequence, tissue distribution and association with Rap1.
Figure 2: RAPL mediates adhesion by LFA-1 and ICAM-1.
Figure 3: Polarized LFA-1 redistribution.
Figure 4: Distribution of RAPL and LFA-1.
Figure 5: RAPL in immunological synapse.

Similar content being viewed by others

References

  1. Dustin, M.L. & Springer, T.A. T-cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341, 619–624 (1989).

    Article  CAS  Google Scholar 

  2. van Kooyk, Y. & Figdor, C.G. Avidity regulation of integrins: the driving force in leukocyte adhesion. Curr. Opin. Cell Biol. 12, 542–547 (2000).

    Article  CAS  Google Scholar 

  3. Constantin, G. et al. Chemokines trigger immediate β2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 13, 759–769 (2000).

    Article  CAS  Google Scholar 

  4. Stewart, M.P., McDowall, A. & Hogg, N. LFA-1-mediated adhesion is regulated by cytoskeletal restraint and by a Ca2+-dependent protease, calpain. J. Cell Biol. 140, 699–707 (1998).

    Article  CAS  Google Scholar 

  5. Peterson, E.J. et al. Coupling of the TCR to integrin activation by Slap-130/Fyb. Science 293, 2263–2265 (2001).

    Article  CAS  Google Scholar 

  6. Griffiths, E.K. et al. Positive regulation of T cell activation and integrin adhesion by the adapter Fyb/Slap. Science 293, 2260–2263 (2001).

    Article  CAS  Google Scholar 

  7. Bos, J.L., de Rooij, J. & Reedquist, K.A. Rap1 signaling: Adhering to new models. Nat. Rev. Mol. Cell Biol. 2, 369–377 (2001).

    Article  CAS  Google Scholar 

  8. Katagiri, K. et al. Rap1 is a potent activation signal for leukocyte function-associated antigen 1 distinct from protein kinase C and phosphatidylinositol-3-kinase. Mol. Cell. Biol. 20, 1956–1969 (2000).

    Article  CAS  Google Scholar 

  9. Tohyama, Y. et al. The critical cytoplasmic regions of the αL/β2 integrin in Rap1-induced adhesion and migration. Mol. Biol. Cell 14, 2570–2582 (2003).

    Article  CAS  Google Scholar 

  10. Sebzda, E., Bracke, M., Tugal, T., Hogg, N. & Cantrell, D.A. Rap1A positively regulates T cells via integrin activation rather than inhibiting lymphocyte signaling. Nat. Immunol. 3, 251–258 (2002).

    Article  CAS  Google Scholar 

  11. Bertoni, A. et al. Relationships between Rap1b, affinity modulation of integrin αIIbβ3, and the actin cytoskeleton. J. Biol. Chem. 277, 25715–25721 (2002).

    Article  CAS  Google Scholar 

  12. Reedquist, K.A. et al. The small GTPase, Rap1, mediates CD31-induced integrin adhesion. J. Cell Biol. 148, 1151–1158 (2000).

    Article  CAS  Google Scholar 

  13. Suga, K. et al. CD98 induces LFA-1-mediated cell adhesion in lymphoid cells via activation of Rap1. FEBS Lett. 489, 249–253 (2001).

    Article  CAS  Google Scholar 

  14. Katagiri, K., Hattori, M., Minato, N. & Kinashi, T. Rap1 functions as a key regulator of T-cell and antigen-presenting cell interactions and modulates T-cell responses. Mol. Cell. Biol. 22, 1001–1015 (2002).

    Article  CAS  Google Scholar 

  15. Shimonaka, M. et al. Rap1 translates chemokine signals to integrin activation, cell polarization, and motility across vascular endothelium under flow. J. Cell Biol. 161, 417–427 (2003).

    Article  CAS  Google Scholar 

  16. Tommasi, S. et al. RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene 21, 2713–2720 (2002).

    Article  CAS  Google Scholar 

  17. Boussiotis, V.A., Freeman, G.J., Berezovskaya, A., Barber, D.L. & Nadler, L.M. Maintenance of human T cell anergy: blocking of IL-2 gene transcription by activated Rap1. Science 278, 124–128 (1997).

    Article  CAS  Google Scholar 

  18. McLeod, S.J., Li, A.H., Lee, R.L., Burgess, A.E. & Gold, M.R. The Rap GTPases regulate B cell migration toward the chemokine stromal cell-derived factor-1 (CXCL12): potential role for Rap2 in promoting B cell migration. J. Immunol. 169, 1365–1371 (2002).

    Article  CAS  Google Scholar 

  19. Nassar, N. et al. The 2.2 Å crystal structure of the Ras-binding domain of the serine/threonine kinase c-Raf1 in complex with Rap1A and a GTP analogue. Nature 375, 554–560 (1995).

    Article  CAS  Google Scholar 

  20. Huang, L., Hofer, F., Martin, G.S. & Kim, S.H. Structural basis for the interaction of Ras with RalGDS. Nat. Struct. Biol. 5, 422–426 (1998).

    Article  CAS  Google Scholar 

  21. Monks, C.R., Freiberg., B.A., Kupfer, H., Sciaky, N. & Kupfer, A. Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 395, 82–86 (1998).

    Article  CAS  Google Scholar 

  22. Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. Science 285, 221–226 (1999).

    Article  CAS  Google Scholar 

  23. Freiberg, A.F. et al. Staging and resetting of T cell activation in SMACs. Nat. Immunol. 3, 911–917 (2002).

    Article  CAS  Google Scholar 

  24. Chant, J. & Stowers, L. GTPase cascades choreographing cellular behavior: movement, morphogenesis, and more. Cell 81, 1–4 (1995).

    Article  CAS  Google Scholar 

  25. Asha, H., de Ruiter, N.D., Wang, M.G. & Hariharan, I.K. The Rap1 GTPase functions as a regulator of morphogenesis in vivo. EMBO J. 18, 605–615 (1999).

    Article  CAS  Google Scholar 

  26. Sanchez-Madrid, F. & del Pozo, M.A. Leukocyte polarization in cell migration and immune interactions. EMBO J. 18, 501–511 (1999).

    Article  CAS  Google Scholar 

  27. Gomez-Mouton, C. et al. Segregation of leading-edge and uropod components into specific lipid rafts during T cell polarization. Proc. Natl. Acad. Sci. USA 98, 9642–9647 (2001).

    Article  CAS  Google Scholar 

  28. Shimaoka, M., Takagi, J. & Springer, T.A. Conformational regulation of integrin structure and function. Annu. Rev. Biophys. Biomol. Struct. 485, 485–516 (2002).

    Article  Google Scholar 

  29. Reilly, P.L. et al. The native structure of intercellular adhesion molecule-1 (ICAM-1) is a dimer. Correlation with binding to LFA-1. J. Immunol. 155, 529–532 (1995).

    CAS  PubMed  Google Scholar 

  30. Miller, J. et al. Intercellular adhesion molecule-1 dimerization and its consequences for adhesion mediated by lymphocyte function associated-1. J. Exp. Med. 182, 1231–1241 (1995).

    Article  CAS  Google Scholar 

  31. Hughes, P.E. et al. Breaking the integrin hinge. J. Biol. Chem. 271, 6571–6574 (1996).

    Article  CAS  Google Scholar 

  32. Lu, C.-H. & Springer, T.A. The α subunit cytoplasmic domain regulates the assembly and adhesiveness of integrin lymphocyte-function-associated antigen-1. J. Immunol. 159, 268–278 (1997).

    CAS  PubMed  Google Scholar 

  33. Kucik, D.F., Dustin, M.L., Miller, J.M. & Brown, E.J. Adhesion-activating phorbol ester increases the mobility of leukocyte integrin LFA-1 in cultured lymphocytes. J. Clin. Invest. 97, 2139–2144 (1996).

    Article  CAS  Google Scholar 

  34. Quinn, M.T., Mullen, M.L., Jesaitis, A.J. & Linner, J.G. Subcellular distribution of the Rap1A protein in human neutrophils: colocalization and cotranslocation with cytochrome b559. Blood 79, 1563–1573 (1992).

    CAS  PubMed  Google Scholar 

  35. Maridonneau-Parini, I. & de Gunzburg, J. Association of rap1 and rap2 proteins with the specific granules of human neutrophils. Translocation to the plasma membrane during cell activation. J. Biol. Chem. 267, 6396–6402 (1992).

    CAS  PubMed  Google Scholar 

  36. Pizon, V., Desjardins, M., Bucci, C., Parton, R.G. & Zerial, M. Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex. J. Cell Sci. 107, 1661–1670 (1994).

    CAS  PubMed  Google Scholar 

  37. Berger, G. et al. Ultrastructural localization of the small GTP-binding protein Rap1 in human platelets and megakaryocytes. Br. J. Haematol. 88, 372–382 (1994).

    Article  CAS  Google Scholar 

  38. D'Silva, N.J., Jacobson, K.L., Ott, S.M. & Watson, E.L. β-Adrenergic-induced cytosolic redistribution of Rap1 in rat parotid acini: role in secretion. Am. J. Physiol. 274, C1667–1673 (1998).

    Article  CAS  Google Scholar 

  39. York, R.D. et al. Rap1 mediates sustained MAP kinase activation induced by nerve growth factor. Nature 392, 622–626 (1998).

    Article  CAS  Google Scholar 

  40. Wu, C., Lai, C.F. & Mobley, W.C. Nerve growth factor activates persistent Rap1 signaling in endosomes. J. Neurosci. 21, 5406–5416 (2001).

    Article  CAS  Google Scholar 

  41. Mochizuki, N. et al. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411, 1065–1068 (2001).

    Article  CAS  Google Scholar 

  42. Kishiro, Y., Kagawa, M., Naito, I. & Sado, Y. A novel method of preparing Rat-monoclonal antibody-producing hybridomas by using rat medial iliac lymph node cells. Cell Struct. Funct. 20, 151–156 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by a grant-in aid from the Ministry of Education, Science, Sports, and Culture of Japan, and the Cell Science Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuo Kinashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katagiri, K., Maeda, A., Shimonaka, M. et al. RAPL, a Rap1-binding molecule that mediates Rap1-induced adhesion through spatial regulation of LFA-1. Nat Immunol 4, 741–748 (2003). https://doi.org/10.1038/ni950

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ni950

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing