Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The miR-15amiR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities

Abstract

MicroRNAs (miRNAs) are noncoding small RNAs that repress protein translation by targeting specific messenger RNAs. miR-15a and miR-16-1 act as putative tumor suppressors by targeting the oncogene BCL2. These miRNAs form a cluster at the chromosomal region 13q14, which is frequently deleted in cancer. Here, we report that the miR-15a and miR-16-1 cluster targets CCND1 (encoding cyclin D1) and WNT3A, which promotes several tumorigenic features such as survival, proliferation and invasion. In cancer cells of advanced prostate tumors, the miR-15a and miR-16 level is significantly decreased, whereas the expression of BCL2, CCND1 and WNT3A is inversely upregulated. Delivery of antagomirs specific for miR-15a and miR-16 to normal mouse prostate results in marked hyperplasia, and knockdown of miR-15a and miR-16 promotes survival, proliferation and invasiveness of untransformed prostate cells, which become tumorigenic in immunodeficient NOD-SCID mice. Conversely, reconstitution of miR-15a and miR-16-1 expression results in growth arrest, apoptosis and marked regression of prostate tumor xenografts. Altogether, we propose that miR-15a and miR-16 act as tumor suppressor genes in prostate cancer through the control of cell survival, proliferation and invasion. These findings have therapeutic implications and may be exploited for future treatment of prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: miR-15a and miR-16 downregulation is associated with oncogenic activities.
Figure 2: Restoration of miR-15a and miR-16 induces growth arrest and apoptosis in defective prostate cancer cells.
Figure 3: miR-15a and miR-16 target CCND1 and WNT3A.
Figure 4: In vivo effect of miR-15a–miR-16 modulation.

Similar content being viewed by others

References

  1. Jemal, A. et al. Cancer statistics, 2006. CA Cancer J. Clin. 56, 106–130 (2006).

    Article  Google Scholar 

  2. Loberg, R.D., Logothetis, C.J., Keller, E.T. & Pienta, K.J. Pathogenesis and treatment of prostate cancer bone metastases: targeting the lethal phenotype. J. Clin. Oncol. 23, 8232–8241 (2005).

    Article  CAS  Google Scholar 

  3. Pienta, K.J. & Smith, D.C. Advances in prostate cancer chemotherapy: a new era begins. CA Cancer J. Clin. 55, 300–318 (2005).

    Article  Google Scholar 

  4. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  Google Scholar 

  5. Care, A. et al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618 (2007).

    Article  CAS  Google Scholar 

  6. Calin, G.A. et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N. Engl. J. Med. 353, 1793–1801 (2005).

    Article  CAS  Google Scholar 

  7. Calin, G.A. et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc. Natl. Acad. Sci. USA 101, 2999–3004 (2004).

    Article  CAS  Google Scholar 

  8. Esquela-Kerscher, A. & Slack, F.J. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 6, 259–269 (2006).

    Article  CAS  Google Scholar 

  9. Calin, G.A. et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA 99, 15524–15529 (2002).

    Article  CAS  Google Scholar 

  10. Dong, J.T., Boyd, J.C. & Frierson, H.F. Jr. Loss of heterozygosity at 13q14 and 13q21 in high-grade, high-stage prostate cancer. Prostate 49, 166–171 (2001).

    Article  CAS  Google Scholar 

  11. Hyytinen, E.R., Frierson, H.F., Jr., Boyd, J.C., Chung, L.W. & Dong, J.T. Three distinct regions of allelic loss at 13q14, 13q21–22, and 13q33 in prostate cancer. Genes Chromosom. Cancer 25, 108–114 (1999).

    Article  CAS  Google Scholar 

  12. Cimmino, A. et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA 102, 13944–13949 (2005).

    Article  CAS  Google Scholar 

  13. Yin, Z. et al. Limiting the location of a putative human prostate cancer tumor suppressor gene at chromosome 13q14.3. Oncogene 18, 7576–7583 (1999).

    Article  CAS  Google Scholar 

  14. Ebert, M.S., Neilson, J.R. & Sharp, P.A. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Methods 4, 721–726 (2007).

    Article  CAS  Google Scholar 

  15. Nupponen, N.N., Hyytinen, E.R., Kallioniemi, A.H. & Visakorpi, T. Genetic alterations in prostate cancer cell lines detected by comparative genomic hybridization. Cancer Genet. Cytogenet. 101, 53–57 (1998).

    Article  CAS  Google Scholar 

  16. Bonci, D. et al. 'Advanced' generation lentiviruses as efficient vectors for cardiomyocyte gene transduction in vitro and in vivo. Gene Ther. 10, 630–636 (2003).

    Article  CAS  Google Scholar 

  17. Felli, N. et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc. Natl. Acad. Sci. USA 102, 18081–18086 (2005).

    Article  CAS  Google Scholar 

  18. Follenzi, A., Ailles, L.E., Bakovic, S., Geuna, M. & Naldini, L. Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequences. Nat. Genet. 25, 217–222 (2000).

    Article  CAS  Google Scholar 

  19. Clevers, H. Wnt/β-catenin signaling in development and disease. Cell 127, 469–480 (2006).

    Article  CAS  Google Scholar 

  20. Dhanasekaran, S.M. et al. Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–826 (2001).

    Article  CAS  Google Scholar 

  21. Sherr, C.J. Cancer cell cycles. Science 274, 1672–1677 (1996).

    Article  CAS  Google Scholar 

  22. Almeida, M., Han, L., Bellido, T., Manolagas, S.C. & Kousteni, S. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by β-catenin–dependent and –independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J. Biol. Chem. 280, 41342–41351 (2005).

    Article  CAS  Google Scholar 

  23. Yun, M.S., Kim, S.E., Jeon, S.H., Lee, J.S. & Choi, K.Y. Both ERK and Wnt/β-catenin pathways are involved in WNT3A-induced proliferation. J. Cell Sci. 118, 313–322 (2005).

    Article  CAS  Google Scholar 

  24. Bello, D., Webber, M.M., Kleinman, H.K., Wartinger, D.D. & Rhim, J.S. Androgen responsive adult human prostatic epithelial cell lines immortalized by human papillomavirus 18. Carcinogenesis 18, 1215–1223 (1997).

    Article  CAS  Google Scholar 

  25. Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685–689 (2005).

    Article  Google Scholar 

  26. Tolcher, A.W. et al. A phase II, pharmacokinetic, and biological correlative study of oblimersen sodium and docetaxel in patients with hormone-refractory prostate cancer. Clin. Cancer Res. 11, 3854–3861 (2005).

    Article  CAS  Google Scholar 

  27. Zimmermann, T.S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    Article  CAS  Google Scholar 

  28. Navone, N.M., Olive, M. & Troncoso, P. Isolation and culture of prostate cancer cell lines. Methods Mol. Med. 88, 121–132 (2004).

    PubMed  Google Scholar 

  29. Nelson, P.T. et al. RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. RNA 12, 187–191 (2006).

    Article  CAS  Google Scholar 

  30. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  Google Scholar 

  31. Lewis, B.P., Shih, I.H., Jones-Rhoades, M.W., Bartel, D.P. & Burge, C.B. Prediction of mammalian microRNA targets. Cell 115, 787–798 (2003).

    Article  CAS  Google Scholar 

  32. John, B. et al. Human MicroRNA targets. PLoS Biol. 2, e363 (2004).

    Article  Google Scholar 

  33. Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Loreto, A. Di Virgilio and M. Blasi for technical assistance and E. Palio and M. Gulisano for valuable discussion and suggestions. This work was supported by the Italian Health Ministry, the Italian Ministry of University and Research (project number RBIP06ZJ78), and the Italian Association for Cancer Research. M. Bartucci is a recipient of a fellowship from the Italian Association for Cancer Research.

Author information

Authors and Affiliations

Authors

Contributions

D.B., V.C., M.M., A.A., R.G., L.M., L.D., A.P., M. Biffoni, C.L. and M. Bartucci conducted the in vitro and in vivo experiments. G.M., D.B. and R.D.M. planned the experiments. L.D. provided human samples. G.M. and C.P. discussed the results and commented on the manuscript. R.D.M. wrote the manuscript and was responsible for research coordination and strategy.

Corresponding author

Correspondence to Ruggero De Maria.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–11, Supplementary Tables 1 and 2 and Supplementary Data and Methods (PDF 1753 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonci, D., Coppola, V., Musumeci, M. et al. The miR-15amiR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 14, 1271–1277 (2008). https://doi.org/10.1038/nm.1880

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1880

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing