Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

Bioluminescence imaging of myeloperoxidase activity in vivo

Abstract

The myeloperoxidase (MPO) system of activated phagocytes is central to normal host defense mechanisms, and dysregulated MPO contributes to the pathogenesis of inflammatory disease states ranging from atherosclerosis to cancer. Here we show that upon systemic administration, the small molecule luminol enables noninvasive bioluminescence imaging (BLI) of MPO activity in vivo. Luminol-BLI allowed quantitative longitudinal monitoring of MPO activity in animal models of acute dermatitis, mixed allergic contact hypersensitivity, focal arthritis and spontaneous large granular lymphocytic tumors. Bioluminescence colocalized with histological sites of inflammation and was totally abolished in gene-deleted Mpo−/− mice, despite massive tissue infiltration of neutrophils and activated eosinophils, indicating that eosinophil peroxidase did not contribute to luminol-BLI in vivo. Thus, luminol-BLI provides a noninvasive, specific and highly sensitive optical readout of phagocyte-mediated MPO activity in vivo and may enable new diagnostic applications in a wide range of acute and chronic inflammatory conditions.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Luminol bioluminescence is dependent on MPO in vitro and ex vivo.
Figure 2: Luminol-BLI of MPO and glucose oxidase (GOX) implants in vivo.
Figure 3: Lack of luminol bioluminescence in vivo in Mpo−/− mice during acute inflammatory insults.
Figure 4: Luminol-BLI of allergic contact hypersensitivity.
Figure 5: Luminol-BLI of spontaneous LGL tumors in Gzmb:Tax mice.

Similar content being viewed by others

References

  1. Klebanoff, S.J. Myeloperoxidase: friend and foe. J. Leukoc. Biol. 77, 598–625 (2005).

    Article  CAS  Google Scholar 

  2. Heinecke, J.W. Mechanisms of oxidative damage by myeloperoxidase in atherosclerosis and other inflammatory disorders. J. Lab. Clin. Med. 133, 321–325 (1999).

    Article  CAS  Google Scholar 

  3. Eiserich, J.P. et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 296, 2391–2394 (2002).

    Article  CAS  Google Scholar 

  4. Bender, J.G., Van Epps, D.E., Searles, R. & Williams, R.C. Jr. Altered function of synovial fluid granulocytes in patients with acute inflammatory arthritis: evidence for activation of neutrophils and its mediation by a factor present in synovial fluid. Inflammation 10, 443–453 (1986).

    Article  CAS  Google Scholar 

  5. Brennan, M.L. et al. Prognostic value of myeloperoxidase in patients with chest pain. N. Engl. J. Med. 349, 1595–1604 (2003).

    Article  CAS  Google Scholar 

  6. Baldus, S. et al. Myeloperoxidase serum levels predict risk in patients with acute coronary syndromes. Circulation 108, 1440–1445 (2003).

    Article  CAS  Google Scholar 

  7. Malle, E., Buch, T. & Grone, H.J. Myeloperoxidase in kidney disease. Kidney Int. 64, 1956–1967 (2003).

    Article  CAS  Google Scholar 

  8. Cantin, A.M., North, S.L., Fells, G.A., Hubbard, R.C. & Crystal, R.G. Oxidant-mediated epithelial cell injury in idiopathic pulmonary fibrosis. J. Clin. Invest. 79, 1665–1673 (1987).

    Article  CAS  Google Scholar 

  9. Reynolds, W.F. et al. Myeloperoxidase polymorphism is associated with gender specific risk for Alzheimer's disease. Exp. Neurol. 155, 31–41 (1999).

    Article  CAS  Google Scholar 

  10. Pennathur, S., Jackson-Lewis, V., Przedborski, S. & Heinecke, J.W. Mass spectrometric quantification of 3-nitrotyrosine, ortho-tyrosine, and o,o'-dityrosine in brain tissue of 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine–treated mice, a model of oxidative stress in Parkinson's disease. J. Biol. Chem. 274, 34621–34628 (1999).

    Article  CAS  Google Scholar 

  11. Reynolds, W.F., Chang, E., Douer, D., Ball, E.D. & Kanda, V. An allelic association implicates myeloperoxidase in the etiology of acute promyelocytic leukemia. Blood 90, 2730–2737 (1997).

    CAS  PubMed  Google Scholar 

  12. Allen, R.C. & Loose, L.D. Phagocytic activation of a luminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochem. Biophys. Res. Commun. 69, 245–252 (1976).

    Article  CAS  Google Scholar 

  13. Stevens, P., Winston, D.J. & Van Dyke, K. In vitro evaluation of opsonic and cellular granulocyte function by luminol-dependent chemiluminescence: utility in patients with severe neutropenia and cellular deficiency states. Infect. Immun. 22, 41–51 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Hallett, M.B., Cole, C. & Dewitt, S. Detection and visualization of oxidase activity in phagocytes. Methods Mol. Biol. 225, 61–67 (2003).

    CAS  PubMed  Google Scholar 

  15. DeChatelet, L.R. et al. Mechanism of the luminol-dependent chemiluminescence of human neutrophils. J. Immunol. 129, 1589–1593 (1982).

    CAS  PubMed  Google Scholar 

  16. Gerber, C.E., Kuci, S., Zipfel, M., Niethammer, D. & Bruchelt, G. Phagocytic activity and oxidative burst of granulocytes in persons with myeloperoxidase deficiency. Eur. J. Clin. Chem. Clin. Biochem. 34, 901–908 (1996).

    CAS  PubMed  Google Scholar 

  17. Lundqvist, H. & Dahlgren, C. Isoluminol-enhanced chemiluminescence: a sensitive method to study the release of superoxide anion from human neutrophils. Free Radic. Biol. Med. 20, 785–792 (1996).

    Article  CAS  Google Scholar 

  18. Brestel, E.P. Co-oxidation of luminol by hypochlorite and hydrogen peroxide implications for neutrophil chemiluminescence. Biochem. Biophys. Res. Commun. 126, 482–488 (1985).

    Article  CAS  Google Scholar 

  19. Dahlgren, C. & Karlsson, A. Respiratory burst in human neutrophils. J. Immunol. Methods 232, 3–14 (1999).

    Article  CAS  Google Scholar 

  20. Jancinova, V. et al. The combined luminol/isoluminol chemiluminescence method for differentiating between extracellular and intracellular oxidant production by neutrophils. Redox Rep. 11, 110–116 (2006).

    Article  CAS  Google Scholar 

  21. Sanders, J.M., Chen, L.J., Burka, L.T. & Matthews, H.B. Metabolism and disposition of luminol in the rat. Xenobiotica 30, 263–272 (2000).

    Article  CAS  Google Scholar 

  22. Irie, S. The treatment of alopecia areata with 3-aminophthal-hydrazide. Curr. Ther. Res. Clin. Exp. 2, 107–110 (1960).

    CAS  PubMed  Google Scholar 

  23. Chen, W.T., Tung, C.H. & Weissleder, R. Imaging reactive oxygen species in arthritis. Mol. Imaging 3, 159–162 (2004).

    Article  CAS  Google Scholar 

  24. Kettle, A.J., Gedye, C.A., Hampton, M.B. & Winterbourn, C.C. Inhibition of myeloperoxidase by benzoic acid hydrazides. Biochem. J. 308, 559–563 (1995).

    Article  CAS  Google Scholar 

  25. Bednar, M.M. et al. Peroxynitrite augments fMLP-stimulated chemiluminescence by neutrophils in human whole blood. J. Leukoc. Biol. 60, 619–624 (1996).

    Article  CAS  Google Scholar 

  26. Chen, J.W., Querol Sans, M., Bogdanov, A. Jr. & Weissleder, R. Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology 240, 473–481 (2006).

    Article  Google Scholar 

  27. Fretland, D.J. et al. Dermal inflammation in primates, mice, and guinea pigs: attenuation by second-generation leukotriene B4 receptor antagonist, SC-53228. Inflammation 19, 333–346 (1995).

    Article  CAS  Google Scholar 

  28. Komatsu, J., Koyama, H., Maeda, N. & Aratani, Y. Earlier onset of neutrophil-mediated inflammation in the ultraviolet-exposed skin of mice deficient in myeloperoxidase and NADPH oxidase. Inflamm. Res. 55, 200–206 (2006).

    Article  CAS  Google Scholar 

  29. Haqqani, A.S., Sandhu, J.K. & Birnboim, H.C. A myeloperoxidase-specific assay based upon bromide-dependent chemiluminescence of luminol. Anal. Biochem. 273, 126–132 (1999).

    Article  CAS  Google Scholar 

  30. Ray, M.C., Tharp, M.D., Sullivan, T.J. & Tigelaar, R.E. Contact hypersensitivity reactions to dinitrofluorobenzene mediated by monoclonal IgE anti-DNP antibodies. J. Immunol. 131, 1096–1102 (1983).

    CAS  PubMed  Google Scholar 

  31. Grossman, W.J. et al. Development of leukemia in mice transgenic for the tax gene of HTLV-I. Proc. Natl. Acad. Sci. USA 92, 1057–1062 (1995).

    Article  CAS  Google Scholar 

  32. Querol, M., Chen, J.W. & Bogdanov, A.A. Jr. A paramagnetic contrast agent with myeloperoxidase-sensing properties. Org. Biomol. Chem. 4, 1887–1895 (2006).

    Article  CAS  Google Scholar 

  33. Querol Sans, M., Chen, J.W., Weissleder, R. & Bogdanov, A.A. Jr. Myeloperoxidase activity imaging using 67Ga labeled substrate. Mol. Imaging Biol. 7, 403–410 (2005).

    Article  Google Scholar 

  34. Shepherd, J. et al. A fluorescent probe for the detection of myeloperoxidase activity in atherosclerosis-associated macrophages. Chem. Biol. 14, 1221–1231 (2007).

    Article  CAS  Google Scholar 

  35. Nahrendorf, M. et al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117, 1153–1160 (2008).

    Article  CAS  Google Scholar 

  36. Giembycz, M.A. & Lindsay, M.A. Pharmacology of the eosinophil. Pharmacol. Rev. 51, 213–340 (1999).

    CAS  PubMed  Google Scholar 

  37. Freiburghaus, J., Jorg, A. & Muller, T. Luminol-dependent chemiluminescence in bovine eosinophils and neutrophils: differential increase of intracellular and extracellular chemiluminescence induced by soluble stimulants. J. Biolumin. Chemilumin. 6, 115–121 (1991).

    Article  CAS  Google Scholar 

  38. Slungaard, A. & Mahoney, J.R. Jr. Thiocyanate is the major substrate for eosinophil peroxidase in physiologic fluids. Implications for cytotoxicity. J. Biol. Chem. 266, 4903–4910 (1991).

    CAS  PubMed  Google Scholar 

  39. Gross, S. & Piwnica-Worms, D. Monitoring proteasome activity in cellulo and in living animals by bioluminescent imaging: technical considerations for design and use of genetically encoded reporters. Methods Enzymol. 399, 512–530 (2005).

    Article  CAS  Google Scholar 

  40. Brennan, M.L. et al. Increased atherosclerosis in myeloperoxidase-deficient mice. J. Clin. Invest. 107, 419–430 (2001).

    Article  CAS  Google Scholar 

  41. Gross, S., Gammon, S.T., Moss, B.L. & Piwnica-Worms, D. Real-time bioluminescence imaging of myeloperoxidase activity in small laboratory animals. Nat. Protoc. published online, doi:10.1038/nprot.2009.73 (22 March 2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank V. Sharma for insightful discussions. This research was funded by US National Institutes of Health grants P50 CA94056, CA105218, CA10073, CA63417 and PO1 HL030086.

Author information

Authors and Affiliations

Authors

Contributions

S.G. designed and performed most of the experiments, spearheaded data analysis and wrote and edited the manuscript; S.T.G. performed experiments and edited the manuscript; B.L.M. performed experiments and edited the manuscript; D.R. assisted with experiments and edited the manuscript; J.H. assisted with experiments; J.W.H. provided crucial reagents, helped design experiments and edited the manuscript; L.R. provided crucial reagents, helped design experiments and edited the manuscript; D.P.-W. guided the project, designed experiments, analyzed data and wrote and edited the manuscript.

Corresponding author

Correspondence to David Piwnica-Worms.

Supplementary information

Supplementary Text and Figures

Supplementary Methods (PDF 125 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gross, S., Gammon, S., Moss, B. et al. Bioluminescence imaging of myeloperoxidase activity in vivo. Nat Med 15, 455–461 (2009). https://doi.org/10.1038/nm.1886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing