Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice

Abstract

Atherosclerosis is characterized by chronic inflammation of the arterial wall due to chemokine-driven mononuclear cell recruitment1,2,3,4. Activated platelets can synergize with chemokines to exacerbate atherogenesis; for example, by deposition of the chemokines platelet factor-4 (PF4, also known as CXCL4) and RANTES (CCL5), triggering monocyte arrest on inflamed endothelium5,6,7,8,9. Homo-oligomerization is required for the recruitment functions of CCL5, and chemokine heteromerization has more recently emerged as an additional regulatory mechanism, as evidenced by a mutual modulation of CXCL8 and CXCL4 activities and by enhanced monocyte arrest resulting from CCL5-CXCL4 interactions10,11,12,13. The CCL5 antagonist Met-RANTES reduces diet-induced atherosclerosis9,14; however, CCL5 antagonism may not be therapeutically feasible, as suggested by studies using Ccl5-deficient mice which imply that direct CCL5 blockade would severely compromise systemic immune responses, delay macrophage-mediated viral clearance and impair normal T cell functions15,16. Here we determined structural features of CCL5-CXCL4 heteromers and designed stable peptide inhibitors that specifically disrupt proinflammatory CCL5-CXCL4 interactions, thereby attenuating monocyte recruitment and reducing atherosclerosis without the aforementioned side effects. These results establish the in vivo relevance of chemokine heteromers and show the potential of targeting heteromer formation to achieve therapeutic effects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Role of blood cell–derived CCL5 and CXCL4 in diet-induced atherogenesis.
Figure 2: NMR spectroscopic analysis of CXCL4 and CKEY2 interactions with CCL5.
Figure 3: In vitro characterization of the peptide antagonists.
Figure 4: Disruption of CCL5-CXCL4 heteromer formation inhibits atherosclerosis in mice.

Similar content being viewed by others

References

  1. Hansson, G.K. Inflammation, atherosclerosis, and coronary artery disease. N. Engl. J. Med. 352, 1685–1695 (2005).

    Article  CAS  Google Scholar 

  2. Weber, C., Zernecke, A. & Libby, P. The multifaceted contributions of leukocyte subsets to atherosclerosis: lessons from mouse models. Nat. Rev. Immunol. 8, 802–815 (2008).

    Article  CAS  Google Scholar 

  3. Zernecke, A., Shagdarsuren, E. & Weber, C. Chemokines in atherosclerosis: an update. Arterioscler. Thromb. Vasc. Biol. 28, 1897–1908 (2008).

    Article  CAS  Google Scholar 

  4. Charo, I.F. & Taubman, M.B. Chemokines in the pathogenesis of vascular disease. Circ. Res. 95, 858–866 (2004).

    Article  CAS  Google Scholar 

  5. Weber, C. Platelets and chemokines in atherosclerosis: partners in crime. Circ. Res. 96, 612–616 (2005).

    Article  CAS  Google Scholar 

  6. Weyrich, A.S. & Zimmerman, G.A. Platelets: signaling cells in the immune continuum. Trends Immunol. 25, 489–495 (2004).

    Article  CAS  Google Scholar 

  7. von Hundelshausen, P. et al. RANTES deposition by platelets triggers monocyte arrest on inflamed and atherosclerotic endothelium. Circulation 103, 1772–1777 (2001).

    Article  CAS  Google Scholar 

  8. Huo, Y. et al. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 9, 61–67 (2003).

    Article  CAS  Google Scholar 

  9. Schober, A. et al. Deposition of platelet RANTES triggering monocyte recruitment requires P-selectin and is involved in neointima formation after arterial injury. Circulation 106, 1523–1529 (2002).

    Article  CAS  Google Scholar 

  10. Baltus, T., Weber, K.S., Johnson, Z., Proudfoot, A.E. & Weber, C. Oligomerization of RANTES is required for CCR1-mediated arrest but not CCR5-mediated transmigration of leukocytes on inflamed endothelium. Blood 102, 1985–1988 (2003).

    Article  CAS  Google Scholar 

  11. Proudfoot, A.E. et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc. Natl. Acad. Sci. USA 100, 1885–1890 (2003).

    Article  CAS  Google Scholar 

  12. Nesmelova, I.V. et al. Platelet factor 4 and interleukin-8 CXC chemokine heterodimer formation modulates function at the quaternary structural level. J. Biol. Chem. 280, 4948–4958 (2005).

    Article  CAS  Google Scholar 

  13. von Hundelshausen, P. et al. Heterophilic interactions of platelet factor 4 and RANTES promote monocyte arrest on endothelium. Blood 105, 924–930 (2005).

    Article  CAS  Google Scholar 

  14. Veillard, N.R. et al. Antagonism of RANTES receptors reduces atherosclerotic plaque formation in mice. Circ. Res. 94, 253–261 (2004).

    Article  CAS  Google Scholar 

  15. Makino, Y. et al. Impaired T cell function in RANTES-deficient mice. Clin. Immunol. 102, 302–309 (2002).

    Article  CAS  Google Scholar 

  16. Tyner, J.W. et al. CCL5–CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nat. Med. 11, 1180–1187 (2005).

    Article  CAS  Google Scholar 

  17. Linton, M.F., Atkinson, J.B. & Fazio, S. Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science 267, 1034–1037 (1995).

    Article  CAS  Google Scholar 

  18. Sachais, B.S. et al. Elimination of platelet factor 4 (PF4) from platelets reduces atherosclerosis in C57Bl/6 and apoE−/− mice. Thromb. Haemost. 98, 1108–1113 (2007).

    Article  CAS  Google Scholar 

  19. Rajagopal, P., Waygood, E.B., Reizer, J., Saier, M.H. & Jr & Klevit, R.E. Demonstration of protein-protein interaction specificity by NMR chemical shift mapping. Protein Sci. 6, 2624–2627 (1997).

    Article  CAS  Google Scholar 

  20. Nesmelova, I.V., Idiyatullin, D. & Mayo, K.H. Measuring protein self-diffusion in protein–protein mixtures using a pulsed gradient spin-echo technique with WATERGATE and isotope filtering. J. Magn. Reson. 166, 129–133 (2004).

    Article  CAS  Google Scholar 

  21. Mayo, K.H. & Chen, M.J. Human platelet factor 4 monomer-dimer-tetramer equilibria investigated by 1H NMR spectroscopy. Biochemistry 28, 9469–9478 (1989).

    Article  CAS  Google Scholar 

  22. Clore, G.M. & Gronenborn, A.M. Three-dimensional structures of alpha and beta chemokines. FASEB J. 9, 57–62 (1995).

    Article  CAS  Google Scholar 

  23. Sticht, H. et al. Solution structure of the human CC chemokine 2: a monomeric representative of the CC chemokine subtype. Biochemistry 38, 5995–6002 (1999).

    Article  CAS  Google Scholar 

  24. Kim, K.S., Rajarathnam, K., Clark-Lewis, I. & Sykes, B.D. Structural characterization of a monomeric chemokine: monocyte chemoattractant protein-3. FEBS Lett. 395, 277–282 (1996).

    Article  CAS  Google Scholar 

  25. Ilyina, E., Milius, R. & Mayo, K.H. Synthetic peptides probe folding initiation sites in platelet factor-4: stable chain reversal found within the hydrophobic sequence LIATLKNGRKISL. Biochemistry 33, 13436–13444 (1994).

    Article  CAS  Google Scholar 

  26. Sorensen, L.N. & Paludan, S.R. Blocking CC chemokine receptor (CCR) 1 and CCR5 during herpes simplex virus type 2 infection in vivo impairs host defence and perturbs the cytokine response. Scand. J. Immunol. 59, 321–333 (2004).

    Article  CAS  Google Scholar 

  27. Anders, H.J. et al. CC chemokine ligand 5/RANTES chemokine antagonists aggravate glomerulonephritis despite reduction of glomerular leukocyte infiltration. J. Immunol. 170, 5658–5666 (2003).

    Article  CAS  Google Scholar 

  28. Paoletti, S. et al. A rich chemokine environment strongly enhances leukocyte migration and activities. Blood 105, 3405–3412 (2005).

    Article  CAS  Google Scholar 

  29. Crown, S.E., Yu, Y., Sweeney, M.D., Leary, J.A. & Handel, T.M. Heterodimerization of CCR2 chemokines and regulation by glycosaminoglycan binding. J. Biol. Chem. 281, 25438–25446 (2006).

    Article  CAS  Google Scholar 

  30. Weber, C. & Koenen, R.R. Fine-tuning leukocyte responses: towards a chemokine 'interactome'. Trends Immunol. 27, 268–273 (2006).

    Article  CAS  Google Scholar 

  31. Hackeng, T.M., Griffin, J.H. & Dawson, P.E. Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc. Natl. Acad. Sci. USA 96, 10068–10073 (1999).

    Article  CAS  Google Scholar 

  32. Halden, Y. et al. Interleukin-8 binds to syndecan-2 on human endothelial cells. Biochem. J. 377, 533–538 (2004).

    Article  CAS  Google Scholar 

  33. Delaglio, F. et al. NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J. Biomol. NMR 6, 277–293 (1995).

    Article  CAS  Google Scholar 

  34. Johnson, B.A. & Blevins, R.A. NMRView: A computer program for the visualization and analysis of NMR data. J. Biomol. NMR 4, 603–614 (1994).

    Article  CAS  Google Scholar 

  35. Chung, C.W., Cooke, R.M., Proudfoot, A.E. & Wells, T.N. The three-dimensional solution structure of RANTES. Biochemistry 34, 9307–9314 (1995).

    Article  CAS  Google Scholar 

  36. Skelton, N.J., Aspiras, F., Ogez, J. & Schall, T.J. Proton NMR assignments and solution conformation of RANTES, a chemokine of the C–C type. Biochemistry 34, 5329–5342 (1995).

    Article  CAS  Google Scholar 

  37. Duma, L., Häussinger, D., Rogowski, M., Lusso, P. & Grzesiek, S. Recognition of RANTES by extracellular parts of the CCR5 receptor. J. Mol. Biol. 365, 1063–1075 (2007).

    Article  CAS  Google Scholar 

  38. Nesmelova, I.V., Sham, Y., Gao, J. & Mayo, K.H. CXC and CC chemokines form mixed heterodimers: association free energies from molecular dynamics simulations and experimental correlations. J. Biol. Chem. 283, 24155–24166 (2008).

    Article  CAS  Google Scholar 

  39. Brooks, B.R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983).

    Article  CAS  Google Scholar 

  40. Zernecke, A. et al. SDF-1α/CXCR4 axis is instrumental in neointimal hyperplasia and recruitment of smooth muscle progenitor cells. Circ. Res. 96, 784–791 (2005).

    Article  CAS  Google Scholar 

  41. Braunersreuther, V. et al. Ccr5 but not Ccr1 deficiency reduces development of diet-induced atherosclerosis in mice. Arterioscler. Thromb. Vasc. Biol. 27, 373–379 (2007).

    Article  CAS  Google Scholar 

  42. Bernhagen, J. et al. MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat. Med. 13, 587–596 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the Deutsche Forschungsgemeinschaft (WE1913/5-2, WE1913/7-1 to C.W., KO2948/1-1 to R.R.K., HU1618/1-1 to P.v.H., ZE827/1-1 to A.Z. and FOR809 to R.R.K., P.v.H., A.Z. and C.W.), the Interdisciplinary Center for Clinical Research “Biomat” within the Medical Faculty of RWTH Aachen University (TV-B112 and TV-B113 to R.R.K. and C.W.), Nederlandse Organisatie voor Wetenschappelijk Onderzoek (VIDI 917.36.372 to T.M.H.) and the US National Institutes of Health (National Research Service Award training grant HL 07062 to I.V.N.). We thank S. Meiler, S. Winkler, J. Tupiec, S. Knarren, M. Garbe, S. Wilbertz, D. Suylen and W. Adriaens for technical assistance. Computer resources were provided by the Minnesota Supercomputing Institute (University of Minnesota). NMR instrumentation was provided with funds from the US National Science Foundation (BIR-961477), the University of Minnesota Medical School and the Minnesota Medical Foundation. Met-RANTES was provided by P. Nelson (University of Munich). NMR chemical-shift assignments for the CCL5 monomer state were provided by S. Grzesiek (University of Basel).

Author information

Authors and Affiliations

Authors

Contributions

R.R.K. designed the peptides; designed, supervised and conducted experiments; and wrote the paper. P.v.H. designed and conducted experiments. I.V.N. designed, conducted and analyzed NMR studies. A.Z. designed, conducted and supervised animal experiments. E.A.L. conducted animal experiments. A.S. and B.K.K. expressed and purified recombinant proteins. A.M.P. conducted biophysical experiments. M.A.K. supplied transgenic mice. S.R.P. conducted viral clearance experiments in mice. A.J.K. designed, supervised and analyzed biophysical experiments. T.M.H. synthesized peptide inhibitors. K.H.M. designed, supervised and analyzed NMR studies and wrote the paper. C.W. designed and supervised the study and wrote the paper.

Corresponding author

Correspondence to Christian Weber.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6 and Supplementary Methods (PDF 434 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koenen, R., von Hundelshausen, P., Nesmelova, I. et al. Disrupting functional interactions between platelet chemokines inhibits atherosclerosis in hyperlipidemic mice. Nat Med 15, 97–103 (2009). https://doi.org/10.1038/nm.1898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing