Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Targeted depletion of lymphotoxin-α–expressing TH1 and TH17 cells inhibits autoimmune disease

Abstract

Uncontrolled T helper type 1 (TH1) and TH17 cells are associated with autoimmune responses. We identify surface lymphotoxin-α (LT-α) as common to TH0, TH1 and TH17 cells and employ a unique strategy to target these subsets using a depleting monoclonal antibody (mAb) directed to surface LT-α. Depleting LT-α–specific mAb inhibited T cell–mediated models of delayed-type hypersensitivity and experimental autoimmune encephalomyelitis. In collagen-induced arthritis (CIA), preventive and therapeutic administration of LT-α–specific mAb inhibited disease, and immunoablated T cells expressing interleukin-17 (IL-17), interferon-γ and tumor necrosis factor-α (TNF-α), whereas decoy lymphotoxin-β receptor (LT-βR) fusion protein had no effect. A mutation in the Fc tail, rendering the antibody incapable of Fcγ receptor binding and antibody-dependent cellular cytotoxicity activity, abolished all in vivo effects. Efficacy in CIA was preceded by a loss of rheumatoid-associated cytokines IL-6, IL-1β and TNF-α within joints. These data indicate that depleting LT-α–expressing lymphocytes with LT-α–specific mAb may be beneficial in the treatment of autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Human TH1 and TH17 cells express LT.
Figure 2: LT expression on mouse TH1-polarized and TH17-polarized CD4+ T cells.
Figure 3: Binding, blocking and ADCC properties of WT LT-α–specific (anti–LT-α) and LT-α.Fc-MT antibodies.
Figure 4: Efficacy of anti–LT-α mAb in DTH and EAE.
Figure 5: Efficacy of LT-α–specific mAb in collagen-induced arthritis.
Figure 6: LT-α–specific mAb depletes TH1 and TH17 antigen-specific cells in CIA.

Similar content being viewed by others

References

  1. Martin, F. & Chan, A.C. B cell immunobiology: evolving concepts from the clinic. Annu. Rev. Immunol. 24, 467–496 (2006).

    Article  CAS  Google Scholar 

  2. Pearl, J.P. et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am. J. Transplant. 5, 465–474 (2005).

    Article  CAS  Google Scholar 

  3. Locksley, R.M. The roaring twenties. Immunity 28, 437–439 (2008).

    Article  CAS  Google Scholar 

  4. Langrish, C.L. et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med. 201, 233–240 (2005).

    Article  CAS  Google Scholar 

  5. Bettelli, E., Oukka, M. & Kuchroo, V.K. TH-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8, 345–350 (2007).

    Article  CAS  Google Scholar 

  6. Weiner, H.L. A shift from adaptive to innate immunity: a potential mechanism of disease progression in multiple sclerosis. J. Neurol. 255 Suppl 1, 3–11 (2008).

    Article  CAS  Google Scholar 

  7. Korn, T., Bettelli, E., Oukka, M. & Kuchroo, V.K. IL-17 and TH17 cells. Annu. Rev. Immunol. 27, 485–517 (2009).

    Article  CAS  Google Scholar 

  8. Bettelli, E. et al. Loss of T-bet, but not STAT1, prevents the development of experimental autoimmune encephalomyelitis. J. Exp. Med. 200, 79–87 (2004).

    Article  CAS  Google Scholar 

  9. Chitnis, T. et al. Effect of targeted disruption of STAT4 and STAT6 on the induction of experimental autoimmune encephalomyelitis. J. Clin. Invest. 108, 739–747 (2001).

    Article  CAS  Google Scholar 

  10. Wang, J. et al. Transcription factor T-bet regulates inflammatory arthritis through its function in dendritic cells. J. Clin. Invest. 116, 414–421 (2006).

    Article  CAS  Google Scholar 

  11. Segal, B.M., Dwyer, B.K. & Shevach, E.M. An interleukin (IL)-10/IL-12 immunoregulatory circuit controls susceptibility to autoimmune disease. J. Exp. Med. 187, 537–546 (1998).

    Article  CAS  Google Scholar 

  12. Murphy, C.A. et al. Divergent pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. J. Exp. Med. 198, 1951–1957 (2003).

    Article  CAS  Google Scholar 

  13. Cua, D.J. et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain. Nature 421, 744–748 (2003).

    Article  CAS  Google Scholar 

  14. Komiyama, Y. et al. IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J. Immunol. 177, 566–573 (2006).

    Article  CAS  Google Scholar 

  15. Nakae, S., Nambu, A., Sudo, K. & Iwakura, Y. Suppression of immune induction of collagen-induced arthritis in IL-17-deficient mice. J. Immunol. 171, 6173–6177 (2003).

    Article  CAS  Google Scholar 

  16. O'Connor, R.A. et al. Cutting edge: TH1 cells facilitate the entry of TH17 cells to the central nervous system during experimental autoimmune encephalomyelitis. J. Immunol. 181, 3750–3754 (2008).

    Article  CAS  Google Scholar 

  17. Nakae, S., Iwakura, Y., Suto, H. & Galli, S.J. Phenotypic differences between TH1 and TH17 cells and negative regulation of TH1 cell differentiation by IL-17. J. Leukoc. Biol. 81, 1258–1268 (2007).

    Article  CAS  Google Scholar 

  18. Abbas, A.R. et al. Immune response in silico (IRIS): immune-specific genes identified from a compendium of microarray expression data. Genes Immun. 6, 319–331 (2005).

    Article  CAS  Google Scholar 

  19. Ware, C.F. Network communications: lymphotoxins, LIGHT and TNF. Annu. Rev. Immunol. 23, 787–819 (2005).

    Article  CAS  Google Scholar 

  20. Weyand, C.M. Immunopathologic aspects of rheumatoid arthritis: who is the conductor and who plays the immunologic instrument? J. Rheumatol. Suppl. 79, 9–14 (2007).

    CAS  PubMed  Google Scholar 

  21. Takemura, S. et al. Lymphoid neogenesis in rheumatoid synovitis. J. Immunol. 167, 1072–1080 (2001).

    Article  CAS  Google Scholar 

  22. Mackay, F., Majeau, G.R., Lawton, P., Hochman, P.S. & Browning, J.L. Lymphotoxin but not tumor necrosis factor functions to maintain splenic architecture and humoral responsiveness in adult mice. Eur. J. Immunol. 27, 2033–2042 (1997).

    Article  CAS  Google Scholar 

  23. Gommerman, J.L. & Browning, J.L. Lymphotoxin/light, lymphoid microenvironments and autoimmune disease. Nat. Rev. Immunol. 3, 642–655 (2003).

    Article  CAS  Google Scholar 

  24. Han, S. et al. Blockade of lymphotoxin pathway exacerbates autoimmune arthritis by enhancing the TH1 response. Arthritis Rheum. 52, 3202–3209 (2005).

    Article  CAS  Google Scholar 

  25. Gramaglia, I., Mauri, D.N., Miner, K.T., Ware, C.F. & Croft, M. Lymphotoxin alphabeta is expressed on recently activated naive and TH1-like CD4 cells but is down-regulated by IL-4 during TH2 differentiation. J. Immunol. 162, 1333–1338 (1999).

    CAS  PubMed  Google Scholar 

  26. Shields, R.L. et al. High resolution mapping of the binding site on human IgG1 for Fc γ RI, Fc γ RII, Fc γ RIII, and FcRn and design of IgG1 variants with improved binding to the Fc γ R. J. Biol. Chem. 276, 6591–6604 (2001).

    Article  CAS  Google Scholar 

  27. Nakae, S. et al. Antigen-specific T cell sensitization is impaired in IL-17–deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17, 375–387 (2002).

    Article  CAS  Google Scholar 

  28. Fava, R.A. et al. A role for the lymphotoxin/LIGHT axis in the pathogenesis of murine collagen-induced arthritis. J. Immunol. 171, 115–126 (2003).

    Article  CAS  Google Scholar 

  29. Dunussi-Joannopoulos, K. et al. B-cell depletion inhibits arthritis in a collagen-induced arthritis (CIA) model, but does not adversely affect humoral responses in a respiratory syncytial virus (RSV) vaccination model. Blood 106, 2235–2243 (2005).

    Article  CAS  Google Scholar 

  30. Seshasayee, D. et al. In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J. Clin. Invest. 117, 3868–3878 (2007).

    Article  CAS  Google Scholar 

  31. Panayi, G.S. Even though T-cell–directed trials have been of limited success, is there reason for optimism? Nat. Clin. Pract. Rheumatol. 2, 58–59 (2006).

    Article  Google Scholar 

  32. Lubberts, E. et al. Overexpression of IL-17 in the knee joint of collagen type II immunized mice promotes collagen arthritis and aggravates joint destruction. Inflamm. Res. 51, 102–104 (2002).

    Article  CAS  Google Scholar 

  33. Chabaud, M., Lubberts, E., Joosten, L., van Den Berg, W. & Miossec, P. IL-17 derived from juxta-articular bone and synovium contributes to joint degradation in rheumatoid arthritis. Arthritis Res. 3, 168–177 (2001).

    Article  CAS  Google Scholar 

  34. Miossec, P. Interleukin-17 in fashion, at last: ten years after its description, its cellular source has been identified. Arthritis Rheum. 56, 2111–2115 (2007).

    Article  CAS  Google Scholar 

  35. Yen, D. et al. IL-23 is essential for T cell–mediated colitis and promotes inflammation via IL-17 and IL-6. J. Clin. Invest. 116, 1310–1316 (2006).

    Article  CAS  Google Scholar 

  36. Elson, C.O. et al. Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology 132, 2359–2370 (2007).

    Article  CAS  Google Scholar 

  37. Zheng, Y. et al. Interleukin-22, a TH17 cytokine, mediates IL-23–induced dermal inflammation and acanthosis. Nature 445, 648–651 (2007).

    Article  CAS  Google Scholar 

  38. Mauri, D.N. et al. LIGHT, a new member of the TNF superfamily, and lymphotoxin α are ligands for herpesvirus entry mediator. Immunity 8, 21–30 (1998).

    Article  CAS  Google Scholar 

  39. Mackay, F. et al. Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. Gastroenterology 115, 1464–1475 (1998).

    Article  CAS  Google Scholar 

  40. Gommerman, J.L. et al. A role for surface lymphotoxin in experimental autoimmune encephalomyelitis independent of LIGHT. J. Clin. Invest. 112, 755–767 (2003).

    Article  CAS  Google Scholar 

  41. Seshasayee, D. et al. In vivo blockade of OX40 ligand inhibits thymic stromal lymphopoietin driven atopic inflammation. J. Clin. Invest. 117, 3868–3878 (2007).

    Article  CAS  Google Scholar 

  42. Ware, C.F., Crowe, P.D., Grayson, M.H., Androlewicz, M.J. & Browning, J.L. Expression of surface lymphotoxin and tumor necrosis factor on activated T, B, and natural killer cells. J. Immunol. 149, 3881–3888 (1992).

    CAS  PubMed  Google Scholar 

  43. Svensson, L., Jirholt, J., Holmdahl, R. & Jansson, L. B cell-deficient mice do not develop type II collagen-induced arthritis (CIA). Clin. Exp. Immunol. 111, 521–526 (1998).

    Article  CAS  Google Scholar 

  44. Tumanov, A.V. et al. Dissecting the role of lymphotoxin in lymphoid organs by conditional targeting. Immunol. Rev. 195, 106–116 (2003).

    Article  CAS  Google Scholar 

  45. Jungbeck, M. et al. Blocking lymphotoxin β receptor signalling exacerbates acute DSS-induced intestinal inflammation—opposite functions for surface lymphotoxin expressed by T and B lymphocytes. Mol. Immunol. 45, 34–41 (2008).

    Article  CAS  Google Scholar 

  46. Summers-DeLuca, L.E. et al. Expression of lymphotoxin-αβ on antigen-specific T cells is required for DC function. J. Exp. Med. 204, 1071–1081 (2007).

    Article  CAS  Google Scholar 

  47. Drayton, D.L., Ying, X., Lee, J., Lesslauer, W. & Ruddle, N.H. Ectopic LT αβ directs lymphoid organ neogenesis with concomitant expression of peripheral node addressin and a HEV-restricted sulfotransferase. J. Exp. Med. 197, 1153–1163 (2003).

    Article  CAS  Google Scholar 

  48. Liepinsh, D.J. et al. Novel lymphotoxin α (LTα) knockout mice with unperturbed tumor necrosis factor expression: reassessing LTα biological functions. Mol. Cell. Biol. 26, 4214–4225 (2006).

    Article  CAS  Google Scholar 

  49. Bossen, C. et al. Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J. Biol. Chem. 281, 13964–13971 (2006).

    Article  CAS  Google Scholar 

  50. Katschke, K.J., Jr. et al. A novel inhibitor of the alternative pathway of complement reverses inflammation and bone destruction in experimental arthritis. J. Exp. Med. 204, 1319–1325 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Nguyen, M. Zhou and the Translational Immunology group for animal studies; A. Gurney; B. Kearce, M.-H. Xie, C. Adams, K. McCutcheon and Antibody Engineering Department for antibody support; C. Austin for pathology support; N. Crellin and A. Iyer for FACS support; and W. Ouyang, F. Martin and H. Spits for manuscript critique.

Author information

Authors and Affiliations

Authors

Contributions

E.Y.C. performed in vitro assays and analyzed in vivo study end points. G.A.K. developed MBP-TCR–transgenic T cell transfer experiments. D.C., M.F. and X.Y. contributed to screening and characterization of mAbs, in vitro assays and paw joint ELISA. A.P.-M. performed Luminex assays. P.G., J.S. and W.P.L. performed collagen-induced arthritis studies. J.Y. and A.N. performed competition assays and established mouse LT-α3 ELISA. S.I., I.P. and C.J.R. performed delayed hypersensitivity and T cell transfer studies. M.B. supervised in vivo studies. L.D. and R.F. performed histology and immunohistochemistry. R.A.D.C. and K.H.B. performed micro-computed tomographic imaging and analysis. J.L.G. supervised the project and drafted manuscript.

Corresponding author

Correspondence to Jane L Grogan.

Ethics declarations

Competing interests

All authors work for Genentech, which develops and markets drugs for a profit.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–9, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 2749 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chiang, E., Kolumam, G., Yu, X. et al. Targeted depletion of lymphotoxin-α–expressing TH1 and TH17 cells inhibits autoimmune disease. Nat Med 15, 766–773 (2009). https://doi.org/10.1038/nm.1984

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.1984

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing