Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy

Abstract

A subset of central glutamatergic synapses are coordinately pruned and matured by unresolved mechanisms during postnatal development. We report that the human epilepsy gene LGI1, encoding leucine-rich, glioma-inactivated protein-1 and mutated in autosomal dominant lateral temporal lobe epilepsy (ADLTE), mediates this process in hippocampus. We created transgenic mice either expressing a truncated mutant LGI1 (835delC) found in ADLTE or overexpressing a wild-type LGI1. We discovered that the normal postnatal maturation of presynaptic and postsynaptic functions was arrested by the 835delC mutant LGI1, and contrastingly, was magnified by excess wild-type LGI1. Concurrently, mutant LGI1 inhibited dendritic pruning and increased the spine density to markedly increase excitatory synaptic transmission. Inhibitory transmission, by contrast, was unaffected. Furthermore, mutant LGI1 promoted epileptiform discharge in vitro and kindling epileptogenesis in vivo with partial γ-aminobutyric acidA (GABAA) receptor blockade. Thus, LGI1 represents a human gene mutated to promote epilepsy through impaired postnatal development of glutamatergic circuits (pages 1126–1127).

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LGI1 downregulates presynaptic release probability at hippocampal MPP-GC excitatory synapses via Kv1 channels during postnatal development.
Figure 2: LGI1 downregulates postsynaptic NR2B-dependent NMDA receptor currents during postnatal brain development.
Figure 3: mLGI1 blocks dendrite pruning during postnatal development and increases spine density.
Figure 4: mLGI1 increases glutamatergic synaptic transmission.
Figure 5: LGI1 trangenes fail to effect inhibitory synaptic transmission.
Figure 6: mLGI1 promotes epilepsy.

Similar content being viewed by others

References

  1. Waites, C.L., Craig, A.M. & Garner, C.C. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28, 251–274 (2005).

    Article  CAS  Google Scholar 

  2. Chen, C. & Regehr, W.G. Developmental remodeling of the retinogeniculate synapse. Neuron 28, 955–966 (2000).

    Article  CAS  Google Scholar 

  3. Rihn, L.L. & Claiborne, B.J. Dendritic growth and regression in rat dentate granule cells during late postnatal development. Brain Res. Dev. Brain Res. 54, 115–124 (1990).

    Article  CAS  Google Scholar 

  4. Bolshakov, V.Y. & Siegelbaum, S.A. Regulation of hippocampal transmitter release during development and long-term potentiation. Science 269, 1730–1734 (1995).

    Article  CAS  Google Scholar 

  5. Chavis, P. & Westbrook, G. Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411, 317–321 (2001).

    Article  CAS  Google Scholar 

  6. Barth, A.L. & Malenka, R.C. NMDAR EPSC kinetics do not regulate the critical period for LTP at thalamocortical synapses. Nat. Neurosci. 4, 235–236 (2001).

    Article  CAS  Google Scholar 

  7. Kalachikov, S. et al. Mutations in LGI1 cause autosomal-dominant partial epilepsy with auditory features. Nat. Genet. 30, 335–341 (2002).

    Article  Google Scholar 

  8. Morante-Redolat, J.M. et al. Mutations in the LGI1/Epitempin gene on 10q24 cause autosomal dominant lateral temporal epilepsy. Hum. Mol. Genet. 11, 1119–1128 (2002).

    Article  CAS  Google Scholar 

  9. Ottman, R. et al. LGI1 mutations in autosomal dominant partial epilepsy with auditory features. Neurology 62, 1120–1126 (2004).

    Article  CAS  Google Scholar 

  10. Steinlein, O.K. Genetic mechanisms that underlie epilepsy. Nat. Rev. Neurosci. 5, 400–408 (2004).

    Article  CAS  Google Scholar 

  11. Senechal, K.R., Thaller, C. & Noebels, J.L. ADPEAF mutations reduce levels of secreted LGI1, a putative tumor suppressor protein linked to epilepsy. Hum. Mol. Genet. 14, 1613–1620 (2005).

    Article  CAS  Google Scholar 

  12. Sirerol-Piquer, M.S. et al. The epilepsy gene LGI1 encodes a secreted glycoprotein that binds to the cell surface. Hum. Mol. Genet. 15, 3436–3445 (2006).

    Article  CAS  Google Scholar 

  13. Fukata, Y. et al. Epilepsy-related ligand/receptor complex LGI1 and ADAM22 regulate synaptic transmission. Science 313, 1792–1795 (2006).

    Article  CAS  Google Scholar 

  14. Schulte, U. et al. The epilepsy-linked Lgi1 protein assembles into presynaptic Kv1 channels and inhibits inactivation by Kvβ1. Neuron 49, 697–706 (2006).

    Article  CAS  Google Scholar 

  15. Datsenko, K.A. & Wanner, B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. USA 97, 6640–6645 (2000).

    Article  CAS  Google Scholar 

  16. Anderson, M.P. et al. Thalamic Cav3.1 T-type Ca2+ channel plays a crucial role in stabilizing sleep. Proc. Natl. Acad. Sci. USA 102, 1743–1748 (2005).

    Article  CAS  Google Scholar 

  17. Uzzau, S., Figueroa-Bossi, N., Rubino, S. & Bossi, L. Epitope tagging of chromosomal genes in Salmonella. Proc. Natl. Acad. Sci. USA 98, 15264–15269 (2001).

    Article  CAS  Google Scholar 

  18. Min, M.Y., Asztely, F., Kokaia, M. & Kullmann, D.M. Long-term potentiation and dual-component quantal signaling in the dentate gyrus. Proc. Natl. Acad. Sci. USA 95, 4702–4707 (1998).

    Article  CAS  Google Scholar 

  19. Thomson, A.M. Facilitation, augmentation and potentiation at central synapses. Trends Neurosci. 23, 305–312 (2000).

    Article  CAS  Google Scholar 

  20. Monaghan, M.M., Trimmer, J.S. & Rhodes, K.J. Experimental localization of Kv1 family voltage-gated K+ channel α and β subunits in rat hippocampal formation. J. Neurosci. 21, 5973–5983 (2001).

    Article  CAS  Google Scholar 

  21. Meiri, N., Sun, M.K., Segal, Z. & Alkon, D.L. Memory and long-term potentiation (LTP) dissociated: normal spatial memory despite CA1 LTP elimination with Kv1.4 antisense. Proc. Natl. Acad. Sci. USA 95, 15037–15042 (1998).

    Article  CAS  Google Scholar 

  22. Meiri, N. et al. Reversible antisense inhibition of Shaker-like Kv1.1 potassium channel expression impairs associative memory in mouse and rat. Proc. Natl. Acad. Sci. USA 94, 4430–4434 (1997).

    Article  CAS  Google Scholar 

  23. Lozovaya, N.A. et al. Extrasynaptic NR2B and NR2D subunits of NMDA receptors shape 'superslow' afterburst EPSC in rat hippocampus. J. Physiol. (Lond.) 558, 451–463 (2004).

    Article  CAS  Google Scholar 

  24. Thompson, C.L., Drewery, D.L., Atkins, H.D., Stephenson, F.A. & Chazot, P.L. Immunohistochemical localization of N-methyl-D-aspartate receptor subunits in the adult murine hippocampal formation: evidence for a unique role of the NR2D subunit. Brain Res. Mol. Brain Res. 102, 55–61 (2002).

    Article  CAS  Google Scholar 

  25. Tovar, K.R. & Westbrook, G.L. The incorporation of NMDA receptors with a distinct subunit composition at nascent hippocampal synapses in vitro. J. Neurosci. 19, 4180–4188 (1999).

    Article  CAS  Google Scholar 

  26. Prybylowski, K. et al. The synaptic localization of NR2B-containing NMDA receptors is controlled by interactions with PDZ proteins and AP-2. Neuron 47, 845–857 (2005).

    Article  CAS  Google Scholar 

  27. Cudmore, S.B. & Gurd, J.W. Postnatal age and protein tyrosine phosphorylation at synapses in the developing rat brain. J. Neurochem. 57, 1240–1248 (1991).

    Article  CAS  Google Scholar 

  28. Rahimi, O. & Claiborne, B.J. Morphological development and maturation of granule neuron dendrites in the rat dentate gyrus. Prog. Brain Res. 163, 167–181 (2007).

    Article  Google Scholar 

  29. Ge, S. et al. GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature 439, 589–593 (2006).

    Article  CAS  Google Scholar 

  30. Liu, Y.B., Lio, P.A., Pasternak, J.F. & Trommer, B.L. Developmental changes in membrane properties and postsynaptic currents of granule cells in rat dentate gyrus. J. Neurophysiol. 76, 1074–1088 (1996).

    Article  CAS  Google Scholar 

  31. Dani, V.S. et al. Reduced cortical activity due to a shift in the balance between excitation and inhibition in a mouse model of Rett syndrome. Proc. Natl. Acad. Sci. USA 102, 12560–12565 (2005).

    Article  CAS  Google Scholar 

  32. Patel, L.S., Wenzel, H.J. & Schwartzkroin, P.A. Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit. J. Neurosci. 24, 9005–9014 (2004).

    Article  CAS  Google Scholar 

  33. Buckmaster, P.S. & Dudek, F.E. Network properties of the dentate gyrus in epileptic rats with hilar neuron loss and granule cell axon reorganization. J. Neurophysiol. 77, 2685–2696 (1997).

    Article  CAS  Google Scholar 

  34. Velís̆˜ek, L. Models of chemically-induced acute seizures. in Models of Seizures and Epilepsy (eds. Pitkänen, A., Schwartzkroin, P.A. & Moshé, S.L.) 127–152 (Academic Press, Boston, 2005).

    Google Scholar 

  35. Bermingham, J.R. Jr. et al. The claw paw mutation reveals a role for Lgi4 in peripheral nerve development. Nat. Neurosci. 9, 76–84 (2006).

    Article  CAS  Google Scholar 

  36. Brenner, R. et al. BK channel β4 subunit reduces dentate gyrus excitability and protects against temporal lobe seizures. Nat. Neurosci. 8, 1752–1759 (2005).

    Article  CAS  Google Scholar 

  37. Hsu, D. The dentate gyrus as a filter or gate: a look back and a look ahead. Prog. Brain Res. 163, 601–613 (2007).

    Article  Google Scholar 

  38. Grosse, G. et al. Expression of Kv1 potassium channels in mouse hippocampal primary cultures: development and activity-dependent regulation. J. Neurosci. 20, 1869–1882 (2000).

    Article  CAS  Google Scholar 

  39. Lau, C.G. & Zukin, R.S. NMDA receptor trafficking in synaptic plasticity and neuropsychiatric disorders. Nat. Rev. Neurosci. 8, 413–426 (2007).

    Article  CAS  Google Scholar 

  40. Yang, P., Baker, K.A. & Hagg, T. The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog. Neurobiol. 79, 73–94 (2006).

    Article  CAS  Google Scholar 

  41. Charych, E.I. et al. Activity-independent regulation of dendrite patterning by postsynaptic density protein PSD-95. J. Neurosci. 26, 10164–10176 (2006).

    Article  CAS  Google Scholar 

  42. Coulter, D.A. & Carlson, G.C. Functional regulation of the dentate gyrus by GABA-mediated inhibition. Prog. Brain Res. 163, 235–243 (2007).

    Article  CAS  Google Scholar 

  43. Wu, C., Wais, M., Sheppy, E., del Campo, M. & Zhang, L. A glue-based, screw-free method for implantation of intra-cranial electrodes in young mice. J. Neurosci. Methods 171, 126–131 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank C.B. Saper, J.S. Flier, D.K. Simon, G.D. Rosen, M.R. Kasten and M.W. Anderson for comments and suggestions, and G.D. Rosen for help on the Neurolucida system. This work was supported in part by the US National Institute of Neurological Disorders and Stroke R01 NS057444 (M.P.A.), US National Institute of Neurological Disorders and Stroke K02 NS054674-03 (M.P.A.), the Nancy Lurie Marks Family Foundation (M.P.A.), Autism Speaks/US National Alliance for Autism Research (M.P.A.) and Beth Israel Deaconess Medical Center.

Author information

Authors and Affiliations

Authors

Contributions

Y.-D.Z. did electrophysiology, morphological reconstructions, in vivo kindling and EEG recording experiments. S.L. engineered the BAC constructs and characterized the transgenic mice. Z.J. and M.W. did immunoblotting and genotyping. S.E.P.S. did in situ hybridization experiments. M.P.A. and Y.-D.Z. designed the study, analyzed the data and wrote the paper.

Corresponding author

Correspondence to Matthew P Anderson.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–12, Supplementary Table 1, Supplementary Note & Supplementary Methods (PDF 1550 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, YD., Lee, S., Jin, Z. et al. Arrested maturation of excitatory synapses in autosomal dominant lateral temporal lobe epilepsy. Nat Med 15, 1208–1214 (2009). https://doi.org/10.1038/nm.2019

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2019

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing