Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transferrin therapy ameliorates disease in β-thalassemic mice

Abstract

Individuals with β-thalassemia develop progressive systemic iron overload, resulting in high morbidity and mortality. These complications are caused by labile plasma iron, which is taken up by parenchymal cells in a dysregulated manner; in contrast, erythropoiesis depends on transferrin-bound iron uptake via the transferrin receptor. We hypothesized that the ineffective erythropoiesis and anemia observed in β-thalassemia might be ameliorated by increasing the amount of circulating transferrin. We tested the ability of transferrin injections to modulate iron metabolism and erythropoiesis in Hbbth1/th1 mice, an experimental model of β-thalassemia. Injected transferrin reversed or markedly improved the thalassemia phenotype in these mice. Specifically, transferrin injections normalized labile plasma iron concentrations, increased hepcidin expression, normalized red blood cell survival and increased hemoglobin production; this treatment concomitantly decreased reticulocytosis, erythropoietin abundance and splenomegaly. These results indicate that transferrin is a limiting factor contributing to anemia in these mice and suggest that transferrin therapy might be beneficial in human β-thalassemia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evaluation of RBC survival, appearance and α-globin precipitation, and quantification of serum erythropoietin in transferrin-treated thalassemic mice.
Figure 2: Effects of transferrin injections on the spleen.
Figure 3: Effect of transferrin injections on apoptosis in early and late erythroid precursors.
Figure 4: Liver hepcidin expression and the presence of FPN-1 on Kupffer cell membranes in transferrin-treated thalassemic mice.

Similar content being viewed by others

References

  1. Weatherall, D.J. Pathophysiology of thalassaemia. Baillieres Clin. Haematol. 11, 127–146 (1998).

    Article  CAS  Google Scholar 

  2. Pootrakul, P. et al. The effects of erythroid hyperplasia on iron balance. Blood 71, 1124–1129 (1988).

    CAS  PubMed  Google Scholar 

  3. Centis, F. et al. The importance of erythroid expansion in determining the extent of apoptosis in erythroid precursors in patients with β-thalassemia major. Blood 96, 3624–3629 (2000).

    CAS  PubMed  Google Scholar 

  4. Pippard, M.J., Callender, S.T., Warner, G.T. & Weatherall, D.J. Iron absorption and loading in β-thalassemia intermedia. Lancet 20, 819–821 (1979).

    Article  Google Scholar 

  5. Park, C.H., Valore, E.V., Waring, A.J. & Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806–7810 (2001).

    Article  CAS  Google Scholar 

  6. Nemeth, E. et al. Hepcidin regulated cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).

    Article  CAS  Google Scholar 

  7. Papanikolaou, G. et al. Hepcidin in iron overload disorders. Blood 105, 4103–4105 (2005).

    Article  CAS  Google Scholar 

  8. Adamsky, K. et al. Decreased hepdicin mRNA expression in thalassemic mice. Br. J. Haematol. 124, 123–124 (2004).

    Article  CAS  Google Scholar 

  9. De Franceschi, L. et al. Liver expression of hepcidin and other iron genes in two mouse models of β-thalassemia. Haematologica 91, 1336–1342 (2006).

    CAS  PubMed  Google Scholar 

  10. Gardenghi, S. et al. Ineffective erythropoiesis in β-thalassemia is characterized by increased iron absorption mediated by down-regulation of hepcidin and up-regulation of ferroportin. Blood 109, 5027–5035 (2007).

    Article  CAS  Google Scholar 

  11. Finch, C. Regulators of iron balance in humans. Blood 84, 1697–1702 (1994).

    CAS  PubMed  Google Scholar 

  12. Kattamis, A. et al. The effects of erythropoietic activity and iron burden on hepcidin expression in patients with thalassemia major. Haematologica 91, 809–812 (2006).

    CAS  PubMed  Google Scholar 

  13. Vokurka, M., Krijt, J., Sulc, K. & Necas, E. Hepcidin mRNA levels in mouse liver respond to inhibition of erythropoiesis. Physiol. Res. 55, 667–674 (2006).

    CAS  PubMed  Google Scholar 

  14. Esposito, B.P. et al. Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood 102, 2670–2677 (2003).

    Article  CAS  Google Scholar 

  15. Richardson, D.R. & Ponka, P. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells. Biochim. Biophys. Acta 1331, 1–40 (1997).

    Article  CAS  Google Scholar 

  16. van Renswoude, J., Bridges, K.R., Harford, J.B. & Klausner, R.D. Receptor-mediated endocytosis of transferrin and the uptake of Fe in K562 cells: identification of a nonlysosomal acidic compartment. Proc. Natl. Acad. Sci. USA 79, 6186–6190 (1982).

    Article  CAS  Google Scholar 

  17. Huebers, H.A. & Finch, C.A. The physiology of transferrin and transferrin receptors. Physiol. Rev. 67, 520–582 (1987).

    Article  CAS  Google Scholar 

  18. Ginzburg, Y.Z. et al. Exogenous iron increases hemoglobin in β-thalassemic mice. Exp. Hematol. 37, 172–183 (2009).

    Article  CAS  Google Scholar 

  19. Skow, L.C. et al. A mouse model for β-thalassemia. Cell 34, 1043–1052 (1983).

    Article  CAS  Google Scholar 

  20. Chaudhury, C. et al. Accelerated transferrin degradation in HFE-deficient mice is associated with increased transferrin saturation. J. Nutr. 136, 2993–2998 (2006).

    Article  CAS  Google Scholar 

  21. Raja, K.B., Pourtney, D.J., Simpson, R.J. & Peters, T.J. Importance of anemia and transferrin levels in the regulation of intestinal iron absorption in hypotransferrinemic mice. Blood 94, 3185–3192 (1999).

    CAS  PubMed  Google Scholar 

  22. Chen, J.J. Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood 109, 2693–2699 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. de Jong, K. et al. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood 98, 1577–1584 (2001).

    Article  CAS  Google Scholar 

  24. Beauchemin, H., Blouin, M.J. & Trudel, M. Differential regulatory and compensatory responses in hematopoiesis/erythropoiesis in α- and β-globin hemizygous mice. J. Biol. Chem. 279, 19471–19480 (2004).

    Article  CAS  Google Scholar 

  25. Sorensen, S., Rubin, E., Polster, H., Mohandas, N. & Schrier, S. The role of membrane skeletal-associated α-globin in the pathophysiology of β-thalassemia. Blood 75, 1333–1336 (1990).

    CAS  PubMed  Google Scholar 

  26. Kean, L.S. et al. Comparison of mechanisms of anemia in mice with sickle cell disease and β-thalassemia: peripheral destruction, ineffective erythropoiesis and phospholipid scramblase–mediated phosphatidylserine exposure. Exp. Hematol. 30, 394–402 (2002).

    Article  CAS  Google Scholar 

  27. Ciavatta, D.J., Ryan, T.M., Farmer, S.C. & Townes, T.M. Mouse model of human β zero thalassemia: targeted deletion of the mouse β maj- and β min-globin genes in embryonic stem cells. Proc. Natl. Acad. Sci. USA 92, 9259–9263 (1995).

    Article  CAS  Google Scholar 

  28. Tanno, T. et al. High levels of GDF15 in thalassemia suppress expression of the iron regulatory protein hepcidin. Nat. Med. 13, 1096–1101 (2007).

    Article  CAS  Google Scholar 

  29. Tanno, T. et al. Identification of TWSG1 as a second novel erythroid regulator of hepcidin expression in murine and human cells. Blood 114, 181–186 (2009).

    Article  CAS  Google Scholar 

  30. Silva, A.M. & Hider, R.C. Influence of non-enzymatic post-translation modifications on the ability of human serum albumin to bind iron. Implications for non-transferrin-bound iron speciation. Biochim. Biophys. Acta 1794, 1449–1458 (2009).

    Article  CAS  Google Scholar 

  31. Huebers, H.A., Josephson, B., Huebers, E., Csiba, E. & Finch, C.A. Occupancy of the iron binding sites of human transferrin. Proc. Natl. Acad. Sci. USA 81, 4326–4330 (1984).

    Article  CAS  Google Scholar 

  32. Huebers, H.A., Csiba, E., Huebers, E. & Finch, C.A. Competitive advantage of diferric transferrin in delivering iron to reticulocytes. Proc. Natl. Acad. Sci. USA 80, 300–304 (1983).

    Article  CAS  Google Scholar 

  33. Libani, I.V. et al. Decreased differentiation of erythroid cells exacerbates ineffective erythropoiesis in β-thalassemia. Blood 112, 875–885 (2008).

    Article  CAS  Google Scholar 

  34. Hosain, F., Marsaglia, G. & Finch, C.A. Blood ferrokinetics in normal man. J. Clin. Invest. 46, 1–9 (1967).

    Article  CAS  Google Scholar 

  35. Parkkinen, J. et al. Effect of repeated apotransferrin administrations on serum iron parameters in patients undergoing myeloablative conditioning and allogeneic stem cell transplantation. Br. J. Haematol. 135, 228–234 (2006).

    Article  CAS  Google Scholar 

  36. Garrick, L.M. et al. Tissue iron deposition in untransfused β-thalassemic mice. Exp. Hematol. 17, 423–428 (1989).

    CAS  PubMed  Google Scholar 

  37. Raja, K.B., Pourtney, D.J., Simpson, R.J. & Peters, T.J. Importance of anemia and transferrin levels in the regulation of intestinal iron absorption in hypotransferrinemic mice. Blood 94, 3185–3192 (1999).

    CAS  PubMed  Google Scholar 

  38. von Bonsdorff, L. et al. Development of a pharmaceutical apotransferrin product for iron binding therapy. Biologicals 29, 27–37 (2001).

    Article  CAS  Google Scholar 

  39. Pootrakul, P. et al. Labile plasma iron (LPI) as an indicator of chelatable plasma redox activity in iron overloaded β-thalassemia/HbE treated with oral chelator. Blood 104, 1504–1510 (2004).

    Article  CAS  Google Scholar 

  40. Kong, Y. et al. Loss of α-hemoglobin–stabilizing protein impairs erythropoiesis and exacerbates β-thalassemia. J. Clin. Invest. 114, 1457–1466 (2004).

    Article  CAS  Google Scholar 

  41. Morrison, T.B., Weis, J.J. & Wittwer, C.T. Quantification of low-copy transcripts by continuous SYBR Green I monitoring during amplification. Biotechniques 24, 954–958 (1998).

    CAS  PubMed  Google Scholar 

  42. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  Google Scholar 

  43. Socolovsky, M. et al. Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 98, 3261–3273 (2001).

    Article  CAS  Google Scholar 

  44. Liu, Y. et al. Suppression of Fas-FasL coexpression by erythropoietin mediates erythroblast expansion during the erythropoietic stress response in vivo. Blood 108, 123–133 (2006).

    Article  CAS  Google Scholar 

  45. Pinheiro, J.C. & Bates, D.M. Approximations to the log-likelihood function in the non-linear mixed effects model. J. Comput. Graph. Statist. 4, 12–35 (1995).

    Google Scholar 

Download references

Acknowledgements

We extend special thanks to M. Knutson (University of Florida, Gainesville) for providing mouse antibodies to FPN-1, Jacobi Medical Center for sample analysis, T. Ganz, E. Nemeth and S. Rivella for stimulating discussions and R. Nagel and M. Narla for unparalleled guidance and support. This work was supported in part by contract grant sponsor US National Institutes of Health–National Heart, Lung, and Blood Institute number HL68962 and HL07556.

Author information

Authors and Affiliations

Authors

Contributions

H.L. collected and analyzed the data. A.C.R. analyzed and interpreted the data and revised the manuscript. S.M.S. provided the study material and technical support. L.v.B. provided the study material and logistical and technical support and revised the manuscript. W.B. provided experimental assistance. C.B.H. performed statistical analysis and revised the manuscript. Z.I.C. provided logistical support, interpreted the data and revised the manuscript. E.E.B. provided logistical support, interpreted the data and revised the manuscript. M.E.F. provided the study material and logistical support, interpreted the data and revised the manuscript. Y.Z.G. developed the idea and designed the experiments, collected, analyzed and interpreted the data and drafted and revised the manuscript.

Corresponding author

Correspondence to Yelena Z Ginzburg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3, Supplementary Tables 1 and 2 and Supplementary Methods (PDF 344 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Rybicki, A., Suzuka, S. et al. Transferrin therapy ameliorates disease in β-thalassemic mice. Nat Med 16, 177–182 (2010). https://doi.org/10.1038/nm.2073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2073

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing