Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity

Abstract

Humans are colonized by a large and diverse bacterial flora (the microbiota) essential for the development of the gut immune system1,2,3. A broader role for the microbiota as a major modulator of systemic immunity has been proposed4,5; however, evidence and a mechanism for this role have remained elusive. We show that the microbiota are a source of peptidoglycan that systemically primes the innate immune system, enhancing killing by bone marrow–derived neutrophils of two major pathogens: Streptococcus pneumoniae and Staphylococcus aureus. This requires signaling via the pattern recognition receptor nucleotide-binding, oligomerization domain–containing protein-1 (Nod1, which recognizes meso-diaminopimelic acid (mesoDAP)-containing peptidoglycan found predominantly in Gram-negative bacteria), but not Nod2 (which detects peptidoglycan found in Gram-positive and Gram-negative bacteria) or Toll-like receptor 4 (Tlr4, which recognizes lipopolysaccharide)6,7. We show translocation of peptidoglycan from the gut to neutrophils in the bone marrow and show that peptidoglycan concentrations in sera correlate with neutrophil function. In vivo administration of Nod1 ligands is sufficient to restore neutrophil function after microbiota depletion. Nod1−/− mice are more susceptible than wild-type mice to early pneumococcal sepsis, demonstrating a role for Nod1 in priming innate defenses facilitating a rapid response to infection. These data establish a mechanism for systemic immunomodulation by the microbiota and highlight potential adverse consequences of microbiota disruption by broad-spectrum antibiotics on innate immune defense to infection.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The microbiota enhance neutrophil function via Nod1 signaling.
Figure 2: Peptidoglycan is present systemically in sera and bone marrow cells, and its abundance is decreased in the absence of the microbiota.
Figure 3: Peptidoglycan recognized by Nod1 restores neutrophil function after microbiota depletion and can activate neutrophils directly via NF-κB signaling, and Nod1 is required for early responses during pneumococcal sepsis.

Similar content being viewed by others

References

  1. Savage, D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol. 31, 107–133 (1977).

    Article  CAS  Google Scholar 

  2. Ley, R.E., Peterson, D.A. & Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124, 837–848 (2006).

    Article  CAS  Google Scholar 

  3. Pamer, E.G. Immune responses to commensal and environmental microbes. Nat. Immunol. 8, 1173–1178 (2007).

    Article  CAS  Google Scholar 

  4. Noverr, M.C. & Huffnagle, G.B. Does the microbiota regulate immune responses outside the gut? Trends Microbiol. 12, 562–568 (2004).

    Article  CAS  Google Scholar 

  5. Noverr, M.C. & Huffnagle, G.B. The 'microflora hypothesis' of allergic diseases. Clin. Exp. Allergy 35, 1511–1520 (2005).

    Article  CAS  Google Scholar 

  6. Kanneganti, T.D., Lamkanfi, M. & Nunez, G. Intracellular NOD-like receptors in host defense and disease. Immunity 27, 549–559 (2007).

    Article  CAS  Google Scholar 

  7. Barton, G.M. & Medzhitov, R. Toll-like receptors and their ligands. Curr. Top. Microbiol. Immunol. 270, 81–92 (2002).

    CAS  PubMed  Google Scholar 

  8. Mazmanian, S.K. & Kasper, D.L. The love-hate relationship between bacterial polysaccharides and the host immune system. Nat. Rev. Immunol. 6, 849–858 (2006).

    Article  CAS  Google Scholar 

  9. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  Google Scholar 

  10. Hall, J.A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649 (2008).

    Article  CAS  Google Scholar 

  11. Uematsu, S. et al. Regulation of humoral and cellular gut immunity by lamina propria dendritic cells expressing Toll-like receptor 5. Nat. Immunol. 9, 769–776 (2008).

    Article  CAS  Google Scholar 

  12. Mazmanian, S.K., Liu, C.H., Tzianabos, A.O. & Kasper, D.L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    Article  CAS  Google Scholar 

  13. Macpherson, A.J. & Harris, N.L. Interactions between commensal intestinal bacteria and the immune system. Nat. Rev. Immunol. 4, 478–485 (2004).

    Article  CAS  Google Scholar 

  14. Segal, A.W. How neutrophils kill microbes. Annu. Rev. Immunol. 23, 197–223 (2005).

    Article  CAS  Google Scholar 

  15. Lysenko, E.S. et al. Nod1 signaling overcomes resistance of S. pneumoniae to opsonophagocytic killing. PLoS Pathog. 3, e118 (2007).

    Article  Google Scholar 

  16. Standish, A.J. & Weiser, J.N. Human neutrophils kill Streptococcus pneumoniae via serine proteases. J. Immunol. 183, 2602–2609 (2009).

    Article  CAS  Google Scholar 

  17. Brenchley, J.M. et al. Microbial translocation is a cause of systemic immune activation in chronic HIV infection. Nat. Med. 12, 1365–1371 (2006).

    Article  CAS  Google Scholar 

  18. Wyatt, J., Vogelsang, H., Hubl, W., Waldhoer, T. & Lochs, H. Intestinal permeability and the prediction of relapse in Crohn's disease. Lancet 341, 1437–1439 (1993).

    Article  CAS  Google Scholar 

  19. Swaan, P.W. et al. Bacterial peptide recognition and immune activation facilitated by human peptide transporter PEPT2. Am. J. Respir. Cell Mol. Biol. 39, 536–542 (2008).

    Article  CAS  Google Scholar 

  20. Ismair, M.G. et al. hPepT1 selectively transports muramyl dipeptide but not Nod1-activating muramyl peptides. Can. J. Physiol. Pharmacol. 84, 1313–1319 (2006).

    Article  CAS  Google Scholar 

  21. Matthias, K.A., Roche, A.M., Standish, A.J., Shchepetov, M. & Weiser, J.N. Neutrophil-toxin interactions promote antigen delivery and mucosal clearance of Streptococcus pneumoniae. J. Immunol. 180, 6246–6254 (2008).

    Article  CAS  Google Scholar 

  22. Redl, H., Bahrami, S., Schlag, G. & Traber, D.L. Clinical detection of LPS and animal models of endotoxemia. Immunobiology 187, 330–345 (1993).

    Article  CAS  Google Scholar 

  23. Xu, X.L. et al. Bacterial peptidoglycan triggers Candida albicans hyphal growth by directly activating the adenylyl cyclase Cyr1p. Cell Host Microbe 4, 28–39 (2008).

    Article  CAS  Google Scholar 

  24. Krueger, J.M. et al. Peptidoglycans as promoters of slow-wave sleep. II. Somnogenic and pyrogenic activities of some naturally occurring muramyl peptides; correlations with mass spectrometric structure determination. J. Biol. Chem. 259, 12659–12662 (1984).

    CAS  PubMed  Google Scholar 

  25. Medzhitov, R. Recognition of microorganisms and activation of the immune response. Nature 449, 819–826 (2007).

    Article  CAS  Google Scholar 

  26. Kelly, C.P., Pothoulakis, C. & LaMont, J.T. Clostridium difficile colitis. N. Engl. J. Med. 330, 257–262 (1994).

    Article  CAS  Google Scholar 

  27. Roche, A.M., King, S.J. & Weiser, J.N. Live attenuated Streptococcus pneumoniae strains induce serotype-independent mucosal and systemic protection in mice. Infect. Immun. 75, 2469–2475 (2007).

    Article  CAS  Google Scholar 

  28. Mine, Y. et al. Immunoactive peptides, FK-156 and FK-565. III. Enhancement of host defense mechanisms against infection. J. Antibiot. (Tokyo) 36, 1059–1066 (1983).

    Article  CAS  Google Scholar 

  29. Inohara, N. et al. Nod1, an Apaf-1-like activator of caspase-9 and nuclear factor-κB. J. Biol. Chem. 274, 14560–14567 (1999).

    Article  CAS  Google Scholar 

  30. Kufer, T.A., Kremmer, E., Banks, D.J. & Philpott, D.J. Role for erbin in bacterial activation of Nod2. Infect. Immun. 74, 3115–3124 (2006).

    Article  CAS  Google Scholar 

  31. Clarke, T.B. et al. Mutational analysis of the substrate specificity of Escherichia coli penicillin binding protein 4. Biochemistry 48, 2675–2683 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C.G. Dowson and D.I. Roper (University of Warwick) for peptidoglycan fragments, D. J. Philpott (University of Toronto) for Nod vector, and D. Kobuley for assistance with germ-free mice. This work was supported by grants AI038446 (J.N.W.), AI044231 (J.N.W.), AI078538 (J.N.W.) and AI037108 (Y.Y.) from the US Public Health Service.

Author information

Authors and Affiliations

Authors

Contributions

T.B.C. designed the research, performed the experiments, analyzed the data and wrote the manuscript; K.M.D. performed experiments, analyzed data and contributed to the manuscript; E.S.L. and A.Y.Z. performed experiments and analyzed data; Y.Y. contributed vital reagents; and J.N.W. designed the research, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Jeffrey N Weiser.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods (PDF 299 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, T., Davis, K., Lysenko, E. et al. Recognition of peptidoglycan from the microbiota by Nod1 enhances systemic innate immunity. Nat Med 16, 228–231 (2010). https://doi.org/10.1038/nm.2087

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2087

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing