Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Memory CD4+ T cells induce innate responses independently of pathogen

Abstract

Inflammation induced by recognition of pathogen-associated molecular patterns markedly affects subsequent adaptive responses. We asked whether the adaptive immune system can also affect the character and magnitude of innate inflammatory responses. We found that the response of memory, but not naive, CD4+ T cells enhances production of multiple innate inflammatory cytokines and chemokines (IICs) in the lung and that, during influenza infection, this leads to early control of virus. Memory CD4+ T cell–induced IICs and viral control require cognate antigen recognition and are optimal when memory cells are either T helper type 1 (TH1) or TH17 polarized but are independent of interferon-γ (IFN-γ) and tumor necrosis factor-α (TNF-α) production and do not require activation of conserved pathogen recognition pathways. This represents a previously undescribed mechanism by which memory CD4+ T cells induce an early innate response that enhances immune protection against pathogens.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Memory CD4+ T cells induce an acute increase in IICs upon influenza infection.
Figure 2: Role of IFN-γ, TNF-α and CCL3 in IIC upregulation by memory CD4+ T cells.
Figure 3: TH1- or TH17-polarization is required for enhanced IIC response and viral control.
Figure 4: Recognition of antigen in the lung is sufficient for IIC upregulation.
Figure 5: Cognate recognition of antigen on MHC class II–expressing CD11c+ cells is sufficient to induce IIC upregulation.
Figure 6: Memory CD4+ T cells induce IIC responses independently of PAMP recognition.

Similar content being viewed by others

References

  1. Janeway, C.A. Jr. & Medzhitov, R. Innate immune recognition. Annu. Rev. Immunol. 20, 197–216 (2002).

    Article  CAS  Google Scholar 

  2. Iwasaki, A. & Medzhitov, R. Toll-like receptor control of the adaptive immune responses. Nat. Immunol. 5, 987–995 (2004).

    Article  CAS  Google Scholar 

  3. Pulendran, B. Modulating vaccine responses with dendritic cells and Toll-like receptors. Immunol. Rev. 199, 227–250 (2004).

    Article  CAS  Google Scholar 

  4. Pulendran, B., Palucka, K. & Banchereau, J. Sensing pathogens and tuning immune responses. Science 293, 253–256 (2001).

    Article  CAS  Google Scholar 

  5. Powell, T.J. et al. Priming with cold-adapted influenza A does not prevent infection but elicits long-lived protection against supralethal challenge with heterosubtypic virus. J. Immunol. 178, 1030–1038 (2007).

    Article  CAS  Google Scholar 

  6. Swain, S.L. et al. CD4+ T-cell memory: generation and multi-faceted roles for CD4+ T cells in protective immunity to influenza. Immunol. Rev. 211, 8–22 (2006).

    Article  CAS  Google Scholar 

  7. Rogers, P.R., Dubey, C. & Swain, S.L. Qualitative changes accompany memory T cell generation: faster, more effective responses at lower doses of antigen. J. Immunol. 164, 2338–2346 (2000).

    Article  CAS  Google Scholar 

  8. London, C.A., Lodge, M.P. & Abbas, A.K. Functional responses and costimulator dependence of memory CD4+ T cells. J. Immunol. 164, 265–272 (2000).

    Article  CAS  Google Scholar 

  9. Bradley, L.M., Duncan, D.D., Yoshimoto, K. & Swain, S.L. Memory effectors: a potent, IL-4–secreting helper T cell population that develops in vivo after restimulation with antigen. J. Immunol. 150, 3119–3130 (1993).

    CAS  PubMed  Google Scholar 

  10. Dahl, M.E., Dabbagh, K., Liggitt, D., Kim, S. & Lewis, D.B. Viral-induced T helper type 1 responses enhance allergic disease by effects on lung dendritic cells. Nat. Immunol. 5, 337–343 (2004).

    Article  CAS  Google Scholar 

  11. Didierlaurent, A. et al. Sustained desensitization to bacterial Toll-like receptor ligands after resolution of respiratory influenza infection. J. Exp. Med. 205, 323–329 (2008).

    Article  CAS  Google Scholar 

  12. Chace, J.H., Cowdery, J.S. & Field, E.H. Effect of anti-CD4 on CD4 subsets. I. Anti-CD4 preferentially deletes resting, naive CD4 cells and spares activated CD4 cells. J. Immunol. 152, 405–412 (1994).

    CAS  PubMed  Google Scholar 

  13. Scott, B. et al. A role for non-MHC genetic polymorphism in susceptibility to spontaneous autoimmunity. Immunity 1, 73–83 (1994).

    Article  CAS  Google Scholar 

  14. McKinstry, K.K. et al. Rapid default transition of CD4 T cell effectors to functional memory cells. J. Exp. Med. 204, 2199–2211 (2007).

    Article  CAS  Google Scholar 

  15. Thomas, P.G. et al. An unexpected antibody response to an engineered influenza virus modifies CD8+ T cell responses. Proc. Natl. Acad. Sci. USA 103, 2764–2769 (2006).

    Article  CAS  Google Scholar 

  16. Mayer, K.D. et al. The functional heterogeneity of type 1 effector T cells in response to infection is related to the potential for IFN-γ production. J. Immunol. 174, 7732–7739 (2005).

    Article  CAS  Google Scholar 

  17. Boehm, U., Klamp, T., Groot, M. & Howard, J.C. Cellular responses to interferon-gamma. Annu. Rev. Immunol. 15, 749–795 (1997).

    Article  CAS  Google Scholar 

  18. Farber, J.M. Mig and IP-10: CXC chemokines that target lymphocytes. J. Leukoc. Biol. 61, 246–257 (1997).

    Article  CAS  Google Scholar 

  19. Amichay, D. et al. Genes for chemokines MuMig and Crg-2 are induced in protozoan and viral infections in response to IFN-γ with patterns of tissue expression that suggest nonredundant roles in vivo. J. Immunol. 157, 4511–4520 (1996).

    CAS  PubMed  Google Scholar 

  20. Nakanishi, Y., Lu, B., Gerard, C. & Iwasaki, A. CD8+ T lymphocyte mobilization to virus-infected tissue requires CD4+ T-cell help. Nature 462, 510–513 (2009).

    Article  CAS  Google Scholar 

  21. Brown, D.M., Dilzer, A.M., Meents, D.L. & Swain, S.L. CD4 T cell–mediated protection from lethal influenza: perforin and antibody-mediated mechanisms give a one-two punch. J. Immunol. 177, 2888–2898 (2006).

    Article  CAS  Google Scholar 

  22. McKinstry, K.K. et al. IL-10 deficiency unleashes an influenza-specific TH17 response and enhances survival against high-dose challenge. J. Immunol. 182, 7353–7363 (2009).

    Article  CAS  Google Scholar 

  23. Wakim, L.M., Waithman, J., van Rooijen, N., Heath, W.R. & Carbone, F.R. Dendritic cell-induced memory T cell activation in nonlymphoid tissues. Science 319, 198–202 (2008).

    Article  CAS  Google Scholar 

  24. De Togni, P. et al. Abnormal development of peripheral lymphoid organs in mice deficient in lymphotoxin. Science 264, 703–707 (1994).

    Article  CAS  Google Scholar 

  25. Debbabi, H. et al. Primary type II alveolar epithelial cells present microbial antigens to antigen-specific CD4+ T cells. Am. J. Physiol. Lung Cell Mol. Physiol. 289, L274–L279 (2005).

    Article  CAS  Google Scholar 

  26. Lemos, M.P., Fan, L., Lo, D. & Laufer, T.M. CD8α+ and CD11b+ dendritic cell–restricted MHC class II controls TH1 CD4+ T cell immunity. J. Immunol. 171, 5077–5084 (2003).

    Article  CAS  Google Scholar 

  27. Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303, 1529–1531 (2004).

    Article  CAS  Google Scholar 

  28. Imai, Y. et al. Identification of oxidative stress and Toll-like receptor 4 signaling as a key pathway of acute lung injury. Cell 133, 235–249 (2008).

    Article  CAS  Google Scholar 

  29. Pichlmair, A. et al. RIG-I–mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    Article  CAS  Google Scholar 

  30. Guarda, G. et al. T cells dampen innate immune responses through inhibition of NLRP1 and NLRP3 inflammasomes. Nature 460, 269–273 (2009).

    Article  CAS  Google Scholar 

  31. Kim, K.D. et al. Adaptive immune cells temper initial innate responses. Nat. Med. 13, 1248–1252 (2007).

    Article  CAS  Google Scholar 

  32. Salomon, R., Hoffmann, E. & Webster, R.G. Inhibition of the cytokine response does not protect against lethal H5N1 influenza infection. Proc. Natl. Acad. Sci. USA 104, 12479–12481 (2007).

    Article  Google Scholar 

  33. Tuvim, M.J., Evans, S.E., Clement, C.G., Dickey, B.F. & Gilbert, B.E. Augmented lung inflammation protects against influenza A pneumonia. PLoS One 4, e4176 (2009).

    Article  Google Scholar 

  34. Kalinski, P. & Moser, M. Consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses. Nat. Rev. Immunol. 5, 251–260 (2005).

    Article  CAS  Google Scholar 

  35. Hale, B.G., Randall, R.E., Ortin, J. & Jackson, D. The multifunctional NS1 protein of influenza A viruses. J. Gen. Virol. 89, 2359–2376 (2008).

    Article  CAS  Google Scholar 

  36. Joffre, O., Nolte, M.A., Sporri, R. & Reis e Sousa, C. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 227, 234–247 (2009).

    Article  CAS  Google Scholar 

  37. Dienz, O. et al. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. J. Exp. Med. 206, 69–78 (2009).

    Article  CAS  Google Scholar 

  38. Szretter, K.J. et al. Role of host cytokine responses in the pathogenesis of avian H5N1 influenza viruses in mice. J. Virol. 81, 2736–2744 (2007).

    Article  CAS  Google Scholar 

  39. Schmitz, N., Kurrer, M., Bachmann, M.F. & Kopf, M. Interleukin-1 is responsible for acute lung immunopathology but increases survival of respiratory influenza virus infection. J. Virol. 79, 6441–6448 (2005).

    Article  CAS  Google Scholar 

  40. Lee, S.W., Youn, J.W., Seong, B.L. & Sung, Y.C. IL-6 induces long-term protective immunity against a lethal challenge of influenza virus. Vaccine 17, 490–496 (1999).

    Article  CAS  Google Scholar 

  41. Hama, Y. et al. Interleukin 12 is a primary cytokine responding to influenza virus infection in the respiratory tract of mice. Acta Virol. 53, 233–240 (2009).

    Article  CAS  Google Scholar 

  42. GeurtsvanKessel, C.H. & Lambrecht, B.N. Division of labor between dendritic cell subsets of the lung. Mucosal Immunol. 1, 442–450 (2008).

    Article  CAS  Google Scholar 

  43. McGill, J., Heusel, J.W. & Legge, K.L. Innate immune control and regulation of influenza virus infections. J. Leukoc. Biol. 86, 803–812 (2009).

    Article  CAS  Google Scholar 

  44. Monteiro, J.M., Harvey, C. & Trinchieri, G. Role of interleukin-12 in primary influenza virus infection. J. Virol. 72, 4825–4831 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhao, M.Q. et al. Alveolar epithelial cell chemokine expression triggered by antigen-specific cytolytic CD8+ T cell recognition. J. Clin. Invest. 106, R49–R58 (2000).

    Article  CAS  Google Scholar 

  46. Guidotti, L.G. & Chisari, F.V. Noncytolytic control of viral infections by the innate and adaptive immune response. Annu. Rev. Immunol. 19, 65–91 (2001).

    Article  CAS  Google Scholar 

  47. Le Saout, C., Mennechet, S., Taylor, N. & Hernandez, J. Memory-like CD8+ and CD4+ T cells cooperate to break peripheral tolerance under lymphopenic conditions. Proc. Natl. Acad. Sci. USA 105, 19414–19419 (2008).

    Article  CAS  Google Scholar 

  48. Elyaman, W. et al. Distinct functions of autoreactive memory and effector CD4+ T cells in experimental autoimmune encephalomyelitis. Am. J. Pathol. 173, 411–422 (2008).

    Article  Google Scholar 

  49. Latham, K.A., Whittington, K.B., Zhou, R., Qian, Z. & Rosloniec, E.F. Ex vivo characterization of the autoimmune T cell response in the HLA-DR1 mouse model of collagen-induced arthritis reveals long-term activation of type II collagen-specific cells and their presence in arthritic joints. J. Immunol. 174, 3978–3985 (2005).

    Article  CAS  Google Scholar 

  50. Strutt, T.M., Uzonna, J., McKinstry, K.K. & Bretscher, P.A. Activation of thymic T cells by MHC alloantigen requires syngeneic, activated CD4+ T cells and B cells as APC. Int. Immunol. 18, 719–728 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (P01AI04630 to and P01AI04566 to S.L.S.), the US Department of Defense (HR#3222) and the Trudeau Institute. We thank J. Kohlmeier and D. Woodland (Trudeau Institute) for Ccr5−/− and Ifnar2−/− mice and M. Mohrs (Trudeau Institute) for C57BL/6-Tg (IFN-γ–EYFP) mice. Influenza A/Philippines was obtained from S. Epstein (CBER FDA), and engineered virus A/PR8-OVAII was obtained from P. Doherty (University of Melbourne). LPS-free whole OVA protein was a generous gift from T. Moran (Mount Sinai School of Medicine).

Author information

Authors and Affiliations

Authors

Contributions

T.M.S. and K.K.M. contributed equally to the design, processing, collection and analysis of data and, together with S.L.S., wrote the paper. S.L.S. and R.W.D. contributed to study design. J.P.D., C.W., Y.K., J.D.C. and G.H. processed and collected data. All authors discussed results and commented on the manuscript.

Corresponding author

Correspondence to Tara M Strutt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 863 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strutt, T., McKinstry, K., Dibble, J. et al. Memory CD4+ T cells induce innate responses independently of pathogen. Nat Med 16, 558–564 (2010). https://doi.org/10.1038/nm.2142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing