Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury

Abstract

Fibrosis is responsible for chronic progressive kidney failure, which is present in a large number of adults in the developed world. It is increasingly appreciated that acute kidney injury (AKI), resulting in aberrant incomplete repair, is a major contributor to chronic fibrotic kidney disease. The mechanism that triggers the fibrogenic response after injury is not well understood. In ischemic, toxic and obstructive models of AKI, we demonstrate a causal association between epithelial cell cycle G2/M arrest and a fibrotic outcome. G2/M-arrested proximal tubular cells activate c-jun NH2-terminal kinase (JNK) signaling, which acts to upregulate profibrotic cytokine production. Treatment with a JNK inhibitor, or bypassing the G2/M arrest by administration of a p53 inhibitor or the removal of the contralateral kidney, rescues fibrosis in the unilateral ischemic injured kidney. Hence, epithelial cell cycle arrest at G2/M and its subsequent downstream signaling are hitherto unrecognized therapeutic targets for the prevention of fibrosis and interruption of the accelerated progression of kidney disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Clinical-pathological features of AKI models.
Figure 2: Repair of renal tubular cells in models of AKI.
Figure 3: Profibrogenic factor production in G2/M-arrested proximal tubular cells in vitro and in AKI models in vivo.
Figure 4: Reversal of G2/M arrest rescues the fibrogenic effect in aristolochic acid-treated HK-2 cells and in the UIRI mouse model.
Figure 5: Prolonged G2/M arrest, induced by alternative strategies, causes a profibrotic phenotype both in vitro and in vivo.
Figure 6: JNK signaling activation mediates G2/M arrest–induced profibrogenic cytokines upregulation.

Similar content being viewed by others

References

  1. Humphreys, B.D. et al. Intrinsic epithelial cells repair the kidney after injury. Cell Stem Cell 2, 284–291 (2008).

    Article  CAS  Google Scholar 

  2. Wynn, T.A. Cellular and molecular mechanisms of fibrosis. J. Pathol. 214, 199–210 (2008).

    Article  CAS  Google Scholar 

  3. Coresh, J., Astor, B.C., Greene, T., Eknoyan, G. & Levey, A.S. Prevalence of chronic kidney disease and decreased kidney function in the adult US population: Third National Health and Nutrition Examination Survey. Am. J. Kidney Dis. 41, 1–12 (2003).

    Article  Google Scholar 

  4. Lameire, N., Jager, K., Van Biesen, W., de Bacquer, D. & Vanholder, R. Chronic kidney disease: a European perspective. Kidney Int. Suppl. S30–S38 (2005).

  5. Forbes, J.M., Hewitson, T.D., Becker, G.J. & Jones, C.L. Ischemic acute renal failure: long-term histology of cell and matrix changes in the rat. Kidney Int. 57, 2375–2385 (2000).

    Article  CAS  Google Scholar 

  6. Macedo, E., Bouchard, J. & Mehta, R.L. Renal recovery following acute kidney injury. Curr. Opin. Crit. Care 14, 660–665 (2008).

    Article  Google Scholar 

  7. Kalluri, R. & Neilson, E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 112, 1776–1784 (2003).

    Article  CAS  Google Scholar 

  8. Liu, Y. Epithelial to mesenchymal transition in renal fibrogenesis: pathologic significance, molecular mechanism, and therapeutic intervention. J. Am. Soc. Nephrol. 15, 1–12 (2004).

    Article  CAS  Google Scholar 

  9. Burns, W.C., Kantharidis, P. & Thomas, M.C. The role of tubular epithelial-mesenchymal transition in progressive kidney disease. Cells Tissues Organs 185, 222–231 (2007).

    Article  CAS  Google Scholar 

  10. Humphreys, B.D. et al. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am. J. Pathol. 176, 85–97 (2010).

    Article  CAS  Google Scholar 

  11. Nguyen, T.Q. & Goldschmeding, R. Bone morphogenetic protein-7 and connective tissue growth factor: novel targets for treatment of renal fibrosis? Pharm. Res. 25, 2416–2426 (2008).

    Article  CAS  Google Scholar 

  12. Qi, W., Chen, X., Poronnik, P. & Pollock, C.A. Transforming growth factor-β/connective tissue growth factor axis in the kidney. Int. J. Biochem. Cell Biol. 40, 9–13 (2008).

    Article  CAS  Google Scholar 

  13. Bonventre, J.V. Dedifferentiation and proliferation of surviving epithelial cells in acute renal failure. J. Am. Soc. Nephrol. 14 Suppl 1, S55–S61 (2003).

    Article  Google Scholar 

  14. Price, P.M., Megyesi, J. & Safirstein, R.L. Cell cycle regulation: repair and regeneration in acute renal failure. Kidney Int. 66, 509–514 (2004).

    Article  CAS  Google Scholar 

  15. Tanaka, H. et al. Role of the E2F1-p19-p53 pathway in ischemic acute renal failure. Nephron Physiol. 101, 27–34 (2005).

    Article  Google Scholar 

  16. Chkhotua, A.B., Abendroth, D., Froeba, G. & Schelzig, H. Up-regulation of cell cycle regulatory genes after renal ischemia/reperfusion: differential expression of p16(INK4a), p21(WAF1/CIP1) and p27(Kip1) cyclin-dependent kinase inhibitor genes depending on reperfusion time. Transpl. Int. 19, 72–77 (2006).

    Article  CAS  Google Scholar 

  17. Melk, A., Schmidt, B.M., Vongwiwatana, A., Rayner, D.C. & Halloran, P.F. Increased expression of senescence-associated cell cycle inhibitor p16INK4a in deteriorating renal transplants and diseased native kidney. Am. J. Transplant. 5, 1375–1382 (2005).

    Article  CAS  Google Scholar 

  18. Jiang, M. & Dong, Z. Regulation and pathological role of p53 in cisplatin nephrotoxicity. J. Pharmacol. Exp. Ther. 327, 300–307 (2008).

    Article  CAS  Google Scholar 

  19. Price, P.M., Safirstein, R.L. & Megyesi, J. The cell cycle and acute kidney injury. Kidney Int. 76, 604–613 (2009).

    Article  Google Scholar 

  20. Molitoris, B.A. et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J. Am. Soc. Nephrol. 20, 1754–1764 (2009).

    Article  CAS  Google Scholar 

  21. Yu, C.C., Woods, A.L. & Levison, D.A. The assessment of cellular proliferation by immunohistochemistry: a review of currently available methods and their applications. Histochem. J. 24, 121–131 (1992).

    Article  CAS  Google Scholar 

  22. Crosio, C. et al. Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol. Cell. Biol. 22, 874–885 (2002).

    Article  CAS  Google Scholar 

  23. Silva, F.G., Nadasdy, T. & Laszik, Z. Immunohistochemical and lectin dissection of the human nephron in health and disease. Arch. Pathol. Lab. Med. 117, 1233–1239 (1993).

    CAS  PubMed  Google Scholar 

  24. Ichimura, T., Hung, C.C., Yang, S.A., Stevens, J.L. & Bonventre, J.V. Kidney injury molecule-1: a tissue and urinary biomarker for nephrotoxicant-induced renal injury. Am. J. Physiol. Renal Physiol. 286, F552–F563 (2004).

    Article  CAS  Google Scholar 

  25. Hendzel, M.J. et al. Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348–360 (1997).

    Article  CAS  Google Scholar 

  26. Abraham, R.T. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177–2196 (2001).

    Article  CAS  Google Scholar 

  27. Goodarzi, A.A., Block, W.D. & Lees-Miller, S.P. The role of ATM and ATR in DNA damage-induced cell cycle control. Prog. Cell Cycle Res. 5, 393–411 (2003).

    PubMed  Google Scholar 

  28. Bencokova, Z. et al. ATM activation and signaling under hypoxic conditions. Mol. Cell. Biol. 29, 526–537 (2009).

    Article  CAS  Google Scholar 

  29. Hickson, I. et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 64, 9152–9159 (2004).

    Article  CAS  Google Scholar 

  30. Komarov, P.G. et al. A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285, 1733–1737 (1999).

    Article  CAS  Google Scholar 

  31. Vassilev, L.T. et al. Selective small-molecule inhibitor reveals critical mitotic functions of human CDK1. Proc. Natl. Acad. Sci. USA 103, 10660–10665 (2006).

    Article  CAS  Google Scholar 

  32. Horwitz, S.B. Mechanism of action of taxol. Trends Pharmacol. Sci. 13, 134–136 (1992).

    Article  CAS  Google Scholar 

  33. Ishani, A. et al. Acute kidney injury increases risk of ESRD among elderly. J. Am. Soc. Nephrol. 20, 223–228 (2009).

    Article  Google Scholar 

  34. Leask, A. & Abraham, D.J. TGF-β signaling and the fibrotic response. FASEB J. 18, 816–827 (2004).

    Article  CAS  Google Scholar 

  35. Zeisberg, M. et al. Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J. Biol. Chem. 282, 23337–23347 (2007).

    Article  CAS  Google Scholar 

  36. Qi, W. et al. Integrated actions of transforming growth factor-β1 and connective tissue growth factor in renal fibrosis. Am. J. Physiol. Renal Physiol. 288, F800–F809 (2005).

    Article  CAS  Google Scholar 

  37. Okada, H. et al. Connective tissue growth factor expressed in tubular epithelium has a pivotal role in renal fibrogenesis. J. Am. Soc. Nephrol. 16, 133–143 (2005).

    Article  CAS  Google Scholar 

  38. Ikawa, Y. et al. Neutralizing monoclonal antibody to human connective tissue growth factor ameliorates transforming growth factor-β–induced mouse fibrosis. J. Cell. Physiol. 216, 680–687 (2008).

    Article  CAS  Google Scholar 

  39. Shi-Wen, X., Leask, A. & Abraham, D. Regulation and function of connective tissue growth factor/CCN2 in tissue repair, scarring and fibrosis. Cytokine Growth Factor Rev. 19, 133–144 (2008).

    Article  Google Scholar 

  40. Stark, G.R. & Taylor, W.R. Control of the G2/M transition. Mol. Biotechnol. 32, 227–248 (2006).

    Article  CAS  Google Scholar 

  41. Taylor, W.R. & Stark, G.R. Regulation of the G2/M transition by p53. Oncogene 20, 1803–1815 (2001).

    Article  CAS  Google Scholar 

  42. Bunz, F. et al. Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282, 1497–1501 (1998).

    Article  CAS  Google Scholar 

  43. Kailong, L. et al. P53-Rb signaling pathway is involved in tubular cell senescence in renal ischemia/reperfusion injury. Biocell 31, 213–223 (2007).

    PubMed  Google Scholar 

  44. Megyesi, J., Price, P.M., Tamayo, E. & Safirstein, R.L. The lack of a functional p21(WAF1/CIP1) gene ameliorates progression to chronic renal failure. Proc. Natl. Acad. Sci. USA 96, 10830–10835 (1999).

    Article  CAS  Google Scholar 

  45. Zahedi, K. et al. Stathmin-deficient mice develop fibrosis and show delayed recovery from ischemic-reperfusion injury. Am. J. Physiol. Renal Physiol. 290, F1559–F1567 (2006).

    Article  CAS  Google Scholar 

  46. Hong, H. et al. Suppression of induced pluripotent stem cell generation by the p53-p21 pathway. Nature 460, 1132–1135 (2009).

    Article  CAS  Google Scholar 

  47. Kawamura, T. et al. Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460, 1140–1144 (2009).

    Article  CAS  Google Scholar 

  48. Marion, R.M. et al. A p53-mediated DNA damage response limits reprogramming to ensure iPS cell genomic integrity. Nature 460, 1149–1153 (2009).

    Article  CAS  Google Scholar 

  49. Ma, F.Y., Sachchithananthan, M., Flanc, R.S. & Nikolic-Paterson, D.J. Mitogen activated protein kinases in renal fibrosis. Front. Biosci. (Schol. Ed.) 1, 171–187 (2009).

    Article  Google Scholar 

  50. Park, K.M. et al. Inducible nitric oxide synthase is an important contributor to prolonged protective effects of ischemic preconditioning in the mouse kidney. J. Biol. Chem. 278, 27256–27266 (2003).

    Article  CAS  Google Scholar 

  51. Hung, C.C., Ichimura, T., Stevens, J.L. & Bonventre, J.V. Protection of renal epithelial cells against oxidative injury by endoplasmic reticulum stress preconditioning is mediated by ERK1/2 activation. J. Biol. Chem. 278, 29317–29326 (2003).

    Article  CAS  Google Scholar 

  52. Ichimura, T. et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest. 118, 1657–1668 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants DK39773 and DK72381 to J.V.B. and DK074030 to J.V.S. L.Y. was supported by a fellowship from the International Society of Nephrology.

Author information

Authors and Affiliations

Authors

Contributions

L.Y. and J.V.B. designed the experiments and wrote the manuscript. L.Y. performed experiments and collected and analyzed data. J.V.B. supervised the project. J.V.S. designed the in vitro rescue experiment and advised on cell biology. T.Y.B. helped collect data and edited the manuscript. C.R.B. helped with making lentivirus shRNA specific for ATM. All authors discussed the results and implications and commented on the manuscript.

Corresponding author

Correspondence to Joseph V Bonventre.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 (PDF 2685 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Besschetnova, T., Brooks, C. et al. Epithelial cell cycle arrest in G2/M mediates kidney fibrosis after injury. Nat Med 16, 535–543 (2010). https://doi.org/10.1038/nm.2144

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2144

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing