Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL

Abstract

The TLX1 and TLX3 transcription factor oncogenes have a key role in the pathogenesis of T cell acute lymphoblastic leukemia (T-ALL)1,2. Here we used reverse engineering of global transcriptional networks to decipher the oncogenic regulatory circuit controlled by TLX1 and TLX3. This systems biology analysis defined T cell leukemia homeobox 1 (TLX1) and TLX3 as master regulators of an oncogenic transcriptional circuit governing T-ALL. Notably, a network structure analysis of this hierarchical network identified RUNX1 as a key mediator of the T-ALL induced by TLX1 and TLX3 and predicted a tumor-suppressor role for RUNX1 in T cell transformation. Consistent with these results, we identified recurrent somatic loss-of-function mutations in RUNX1 in human T-ALL. Overall, these results place TLX1 and TLX3 at the top of an oncogenic transcriptional network controlling leukemia development, show the power of network analyses to identify key elements in the regulatory circuits governing human cancer and identify RUNX1 as a tumor-suppressor gene in T-ALL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: TLX1- and TLX3-expressing T-ALLs are associated with a distinct gene expression signature that is highly enriched in downregulated direct target genes of TLX1 and TLX3 as determined by ChIP-chip.
Figure 2: An ARACNe transcriptional network identifies TLX1 and TLX3 direct targets and genes differentially expressed in TLX1- and TLX3-expressing T-ALLs.
Figure 3: Reverse engineering and structure analysis of the TLXi.
Figure 4: RUNX1 mutations in T-ALL.

Similar content being viewed by others

References

  1. Ferrando, A.A. et al. Gene expression signatures define novel oncogenic pathways in T cell acute lymphoblastic leukemia. Cancer Cell 1, 75–87 (2002).

    Article  CAS  Google Scholar 

  2. Aifantis, I., Raetz, E. & Buonamici, S. Molecular pathogenesis of T-cell leukaemia and lymphoma. Nat. Rev. Immunol. 8, 380–390 (2008).

    Article  CAS  Google Scholar 

  3. Hatano, M., Roberts, C.W., Minden, M., Crist, W.M. & Korsmeyer, S.J. Deregulation of a homeobox gene, HOX11, by the t(10;14) in T cell leukemia. Science 253, 79–82 (1991).

    Article  CAS  Google Scholar 

  4. Kennedy, M.A. et al. HOX11, a homeobox-containing T-cell oncogene on human chromosome 10q24. Proc. Natl. Acad. Sci. USA 88, 8900–8904 (1991).

    Article  CAS  Google Scholar 

  5. Bernard, O.A. et al. A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia 15, 1495–1504 (2001).

    Article  CAS  Google Scholar 

  6. Van Vlierberghe, P. et al. The recurrent SET-NUP214 fusion as a new HOXA activation mechanism in pediatric T-cell acute lymphoblastic leukemia. Blood 111, 4668–4680 (2008).

    Article  CAS  Google Scholar 

  7. Ferrando, A.A. et al. Prognostic importance of TLX1 (HOX11) oncogene expression in adults with T-cell acute lymphoblastic leukaemia. Lancet 363, 535–536 (2004).

    Article  CAS  Google Scholar 

  8. Su, X.Y. et al. Various types of rearrangements target TLX3 locus in T-cell acute lymphoblastic leukemia. Genes Chromosom. Cancer 41, 243–249 (2004).

    Article  CAS  Google Scholar 

  9. Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382–390 (2005).

    Article  CAS  Google Scholar 

  10. Margolin, A.A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7 (suppl. 1), S7 (2006).

    Article  Google Scholar 

  11. De Keersmaecker, K. et al. The TLX1 oncogene drives aneuploidy in T cell transformation. Nat. Med. 16, 1321–1327 (2010).

    Article  CAS  Google Scholar 

  12. Speck, N.A. & Gilliland, D.G. Core-binding factors in haematopoiesis and leukaemia. Nat. Rev. Cancer 2, 502–513 (2002).

    Article  CAS  Google Scholar 

  13. Song, W.J. et al. Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat. Genet. 23, 166–175 (1999).

    Article  CAS  Google Scholar 

  14. Osato, M., Yanagida, M., Shigesada, K. & Ito, Y. Point mutations of the RUNx1/AML1 gene in sporadic and familial myeloid leukemias. Int. J. Hematol. 74, 245–251 (2001).

    Article  CAS  Google Scholar 

  15. Osato, M. Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23, 4284–4296 (2004).

    Article  CAS  Google Scholar 

  16. Lefebvre, C. et al. A human B-cell interactome identifies MYB and FOXM1 as master regulators of proliferation in germinal centers. Mol. Syst. Biol. 6, 377 (2010).

    Article  Google Scholar 

  17. Carro, M.S. et al. The transcriptional network for mesenchymal transformation of brain tumours. Nature 463, 318–325 (2010).

    Article  CAS  Google Scholar 

  18. Preudhomme, C. et al. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood 113, 5583–5587 (2009).

    Article  CAS  Google Scholar 

  19. Owen, C.J. et al. Five new pedigrees with inherited RUNX1 mutations causing familial platelet disorder with propensity to myeloid malignancy. Blood 112, 4639–4645 (2008).

    Article  CAS  Google Scholar 

  20. Nishimoto, N. et al. T cell acute lymphoblastic leukemia arising from familial platelet disorder. Int. J. Hematol. 92, 194–197 (2010).

    Article  CAS  Google Scholar 

  21. Osato, M. et al. Biallelic and heterozygous point mutations in the runt domain of the AML1/PEBP2αB gene associated with myeloblastic leukemias. Blood 93, 1817–1824 (1999).

    CAS  PubMed  Google Scholar 

  22. Rocquain, J. et al. Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias. BMC Cancer 10, 401 (2010).

    Article  Google Scholar 

  23. Langabeer, S.E., Gale, R.E., Rollinson, S.J., Morgan, G.J. & Linch, D.C. Mutations of the AML1 gene in acute myeloid leukemia of FAB types M0 and M7. Genes Chromosom. Cancer 34, 24–32 (2002).

    Article  CAS  Google Scholar 

  24. Auewarakul, C.U. et al. AML1 mutation and its coexistence with different transcription factor gene families in de novo acute myeloid leukemia (AML): redundancy or synergism. Haematologica 92, 861–862 (2007).

    Article  CAS  Google Scholar 

  25. Christiansen, D.H., Andersen, M.K. & Pedersen-Bjergaard, J. Mutations of AML1 are common in therapy-related myelodysplasia following therapy with alkylating agents and are significantly associated with deletion or loss of chromosome arm 7q and with subsequent leukemic transformation. Blood 104, 1474–1481 (2004).

    Article  CAS  Google Scholar 

  26. Grossmann, V. et al. Prognostic relevance of RUNX1 mutations in T-cell acute lymphoblastic leukemia. Haematol. 96, 1874–1877 (2011).

    Article  CAS  Google Scholar 

  27. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  Google Scholar 

  28. Margolin, A.A. et al. ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Proc. Natl. Acad. Sci. USA 106, 244–249 (2009).

    Article  CAS  Google Scholar 

  29. Fischer, M. et al. MarkUs: a server to navigate sequence-structure-function space. Nucleic Acids Res. 39, W357–W361 (2011).

    Article  CAS  Google Scholar 

  30. Pettersen, E.F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    Article  CAS  Google Scholar 

  31. Adzhubei, I.A. et al. A method and server for predicting damaging missense mutations. Nat. Methods 7, 248–249 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Institutes of Health (grants R01CA120196 and R01CA129382 to A.A.F.; and U24 CA114737 to E.P.), the New York Community Trust (A.A.F.), the Innovative Research Award by the Stand Up to Cancer Foundation (A.A.F.), the Eastern Cooperative Oncology Group tumor bank, the Leukemia and Lymphoma Society Scholar Award (A.A.F.), the Stichting Kinderen Kankervrij (KiKa; grant 2007-012) (J.P.M.) and the Dutch Cancer Society (KWF-EMCR 2006-3500) (J.P.M.). A.P.-G. is a postdoctoral researcher funded by the Rally Foundation. G.D.G. was supported by a Marie Curie International Outgoing fellowship. We thank S. Nimer (Memorial Sloan Kettering Cancer Center) for the pCDNA3 RUNX1 expression vector, D. Zhang (University of California, San Diego) for the pM-CSF-R-luc promoter reporter and the pCMV CBFB plasmids and J. Downing (St. Jude Children's Research Hospital) for the Runx1 knockout mice.

Author information

Authors and Affiliations

Authors

Contributions

G.D.G. performed expression and network analysis of human and mouse leukemias, identified RUNX1 mutations in T-ALL and wrote the manuscript; T.P. performed ChIP-chip analysis of TLX1 and TLX3 and the RNA interference experiments; A.P.-G. analyzed the tumor activity of RUNX1; A.A.-I. and M.B. performed network analysis; Z.W.C. performed structure modeling of RUNX1 mutant protein; K.D.K. performed mouse studies; X.S. analyzed ChIP-chip data; L.X. performed mouse studies; E.P., J.R., P.H.W. and J.M.R. provided clinical specimens and correlative data on adult T-ALL samples; J.P.M. contributed clinical specimens and performed microarray analysis; A.C. supervised research; and A.A.F. designed the study, supervised research and wrote the manuscript.

Corresponding author

Correspondence to Adolfo A Ferrando.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Methods, Supplementary Figures 1–13 and Supplementary Tables 1–11 (PDF 5740 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Della Gatta, G., Palomero, T., Perez-Garcia, A. et al. Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat Med 18, 436–440 (2012). https://doi.org/10.1038/nm.2610

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2610

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing