Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker

Abstract

There is a pressing need to identify prognostic markers of metastatic disease and targets for treatment. Combining high-throughput RNA sequencing, functional characterization, mechanistic studies and clinical validation, we identify leukemia inhibitory factor receptor (LIFR) as a breast cancer metastasis suppressor downstream of the microRNA miR-9 and upstream of Hippo signaling. Restoring LIFR expression in highly malignant tumor cells suppresses metastasis by triggering a Hippo kinase cascade that leads to phosphorylation, cytoplasmic retention and functional inactivation of the transcriptional coactivator YES-associated protein (YAP). Conversely, loss of LIFR in nonmetastatic breast cancer cells induces migration, invasion and metastatic colonization through activation of YAP. LIFR is downregulated in human breast carcinomas and inversely correlates with metastasis. Notably, in approximately 1,000 nonmetastatic breast tumors, LIFR expression status correlated with metastasis-free, recurrence-free and overall survival outcomes in the patients. These findings identify LIFR as a metastasis suppressor that functions through the Hippo-YAP pathway and has significant prognostic power.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: LIFR is a target of miR-9 and mediates its effect on migration, invasion and metastasis.
Figure 2: Restoring LIFR expression in highly malignant breast cancer cells suppresses metastasis.
Figure 3: LIFR activates Hippo signaling and leads to phosphorylation and functional inactivation of YAP in breast cancer cells.
Figure 4: Inhibition of YAP and CTGF mediates the metastasis-suppressing effect of LIFR.
Figure 5: LIFR is downregulated in human breast cancer and correlates with clinical outcomes.

Similar content being viewed by others

References

  1. Lee, Y.T. Breast carcinoma: pattern of metastasis at autopsy. J. Surg. Oncol. 23, 175–180 (1983).

    Article  CAS  PubMed  Google Scholar 

  2. Weigelt, B., Peterse, J.L. & van 't Veer, L.J. Breast cancer metastasis: markers and models. Nat. Rev. Cancer 5, 591–602 (2005).

    Article  CAS  PubMed  Google Scholar 

  3. Steeg, P.S. Tumor metastasis: mechanistic insights and clinical challenges. Nat. Med. 12, 895–904 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Steeg, P.S. & Theodorescu, D. Metastasis: a therapeutic target for cancer. Nat. Clin. Pract. Oncol. 5, 206–219 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vaidya, K.S. & Welch, D.R. Metastasis suppressors and their roles in breast carcinoma. J. Mammary Gland Biol. Neoplasia 12, 175–190 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. He, L. & Hannon, G.J. MicroRNAs: small RNAs with a big role in gene regulation. Nat. Rev. Genet. 5, 522–531 (2004).

    Article  CAS  PubMed  Google Scholar 

  8. Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nicoloso, M.S., Spizzo, R., Shimizu, M., Rossi, S. & Calin, G.A. MicroRNAs—the micro steering wheel of tumour metastases. Nat. Rev. Cancer 9, 293–302 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Ma, L., Teruya-Feldstein, J. & Weinberg, R.A. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682–688 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. Tavazoie, S.F. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451, 147–152 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang, Q. et al. The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat. Cell Biol. 10, 202–210 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Valastyan, S. et al. A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032–1046 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma, L. et al. miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat. Cell Biol. 12, 247–256 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ma, L. et al. Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat. Biotechnol. 28, 341–347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Huntsman, D.G. et al. Early gastric cancer in young, asymptomatic carriers of germ-line E-cadherin mutations. N. Engl. J. Med. 344, 1904–1909 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Chan, J.K. & Wong, C.S. Loss of E-cadherin is the fundamental defect in diffuse-type gastric carcinoma and infiltrating lobular carcinoma of the breast. Adv. Anat. Pathol. 8, 165–172 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Gearing, D.P. The leukemia inhibitory factor and its receptor. Adv. Immunol. 53, 31–58 (1993).

    Article  CAS  PubMed  Google Scholar 

  20. Kishimoto, T., Akira, S., Narazaki, M. & Taga, T. Interleukin-6 family of cytokines and gp130. Blood 86, 1243–1254 (1995).

    CAS  PubMed  Google Scholar 

  21. Tamm, C., Bower, N. & Anneren, C. Regulation of mouse embryonic stem cell self-renewal by a Yes-YAP-TEAD2 signaling pathway downstream of LIF. J. Cell Sci. 124, 1136–1144 (2011).

    Article  PubMed  Google Scholar 

  22. Zhao, B. et al. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 25, 51–63 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhao, B. et al. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21, 2747–2761 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao, B. et al. TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22, 1962–1971 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhao, B., Li, L., Lei, Q. & Guan, K.L. The Hippo-YAP pathway in organ size control and tumorigenesis: an updated version. Genes Dev. 24, 862–874 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pan, D. The hippo signaling pathway in development and cancer. Dev. Cell 19, 491–505 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kang, Y. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell 3, 537–549 (2003).

    Article  CAS  PubMed  Google Scholar 

  28. Dong, J. et al. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130, 1120–1133 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Cordenonsi, M. et al. The Hippo transducer TAZ confers cancer stem cell–related traits on breast cancer cells. Cell 147, 759–772 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. Rhodes, D.R. et al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia 6, 1–6 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Richardson, A.L. et al. X chromosomal abnormalities in basal-like human breast cancer. Cancer Cell 9, 121–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Zhao, H. et al. Different gene expression patterns in invasive lobular and ductal carcinomas of the breast. Mol. Biol. Cell 15, 2523–2536 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Finak, G. et al. Stromal gene expression predicts clinical outcome in breast cancer. Nat. Med. 14, 518–527 (2008).

    Article  CAS  PubMed  Google Scholar 

  34. Sørlie, T. et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA 98, 10869–10874 (2001).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Radvanyi, L. et al. The gene associated with trichorhinophalangeal syndrome in humans is overexpressed in breast cancer. Proc. Natl. Acad. Sci. USA 102, 11005–11010 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sorlie, T. et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc. Natl. Acad. Sci. USA 100, 8418–8423 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Turashvili, G. et al. Novel markers for differentiation of lobular and ductal invasive breast carcinomas by laser microdissection and microarray analysis. BMC Cancer 7, 55 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Perou, C.M. et al. Molecular portraits of human breast tumours. Nature 406, 747–752 (2000).

    Article  CAS  PubMed  Google Scholar 

  39. Karnoub, A.E. et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449, 557–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  40. Smith, S.C. & Theodorescu, D. Learning therapeutic lessons from metastasis suppressor proteins. Nat. Rev. Cancer 9, 253–264 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Stewart, S.A. et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 9, 493–501 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rehmsmeier, M., Steffen, P., Hochsmann, M. & Giegerich, R. Fast and effective prediction of microRNA/target duplexes. RNA 10, 1507–1517 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to R.A. Weinberg for his advice and reagents. We thank S. Ethier for providing cell lines; F. Reinhardt for advice on mouse surgery; the Genome Technology Core at the Whitehead Institute, the ShRNA and ORFeome Core at MD Anderson Cancer Center and the Histology Core Laboratories at MD Anderson Cancer Center and Memorial Sloan-Kettering Cancer Center for technical assistance; and members of the Ma Lab for discussion. We thank J. Chen, K. Muller, W. Pagel, K. Keyomarsi, L. Li and R. Cleveland for critical reading of the manuscript. This work is supported by the US National Institutes of Health grants R00CA138572 (to L.M.), R01CA166051 (to L.M.), R01CA109311 (to M.-C.H.) and P01CA099031 (to M.-C.H.), a Cancer Prevention and Research Institute of Texas Scholar Award R1004 (to L.M.), a University of Texas STARS Award (to L.M.), a Faculty Development Award (to L.M.) from the MD Anderson Cancer Center Support grant CA016672 from the US National Institutes of Health, Center for Biological Pathways (to Y.S. and M.-C.H.), a Susan G. Komen for the Cure grant SAC110016 (to M.-C.H.), the National Breast Cancer Foundation, Inc. and the Sister Institution Fund of China Medical University and Hospital and MD Anderson Cancer Center (to M.-C.H.).

Author information

Authors and Affiliations

Authors

Contributions

L.M. conceived of and supervised the project. D.C. and L.M. designed, performed and analyzed most of the experiments. Y.S. maintained shRNA and open reading frame (ORF) libraries, constructed RNA-Seq libraries and analyzed RNA-Seq data. Y.W. and M.-C.H. performed studies on tissue microarrays of human patient samples. P.Z. performed some biochemical work. A.H.R. and H.-K.L. performed tail vein injection experiments. J.T.-F. performed histopathological analysis. S.G. processed the raw data from the Solexa sequencer. H.L. performed TCGA data analysis. L.M. wrote the manuscript with input from all other authors.

Corresponding author

Correspondence to Li Ma.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Discussion and Supplementary Figures 1–15 (PDF 2281 kb)

Supplementary Table

Supplementary Tables 1–4 (XLS 153 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, D., Sun, Y., Wei, Y. et al. LIFR is a breast cancer metastasis suppressor upstream of the Hippo-YAP pathway and a prognostic marker. Nat Med 18, 1511–1517 (2012). https://doi.org/10.1038/nm.2940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2940

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer