Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection

Abstract

The commensal flora can promote both immunity to pathogens and mucosal inflammation. How commensal-driven inflammation is regulated in the context of infection remains poorly understood. Here, we show that during acute mucosal infection of mice with Toxoplasma gondii, inflammatory monocytes acquire a tissue-specific regulatory phenotype associated with production of the lipid mediator prostaglandin E2 (PGE2). Notably, in response to commensals, inflammatory monocytes can directly inhibit neutrophil activation in a PGE2-dependent manner. Further, in the absence of inflammatory monocytes, mice develop severe neutrophil-mediated pathology in response to pathogen challenge that can be controlled by PGE2 analog treatment. Complementing these findings, inhibition of PGE2 led to enhanced neutrophil activation and host mortality after infection. These data demonstrate a previously unappreciated dual action of inflammatory monocytes in controlling pathogen expansion while limiting commensal-mediated damage to the gut. Collectively, our results place inflammatory monocyte–derived PGE2 at the center of a commensal-driven regulatory loop required to control host-commensal dialog during pathogen-induced inflammation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Collapse of regulatory network and recruitment of inflammatory monocytes during mucosal T. gondii infection.
Figure 2: Ly6Chi inflammatory monocytes have dual features in the SILP.
Figure 3: Ly6Chi inflammatory monocytes acquire regulatory features in response to commensal stimuli.
Figure 4: Impaired Ly6Chi inflammatory monocyte recruitment leads to enhanced neutrophil mediated pathology.
Figure 5: Ly6Chi inflammatory monocytes regulate neutrophil activation through production of PGE2.
Figure 6: PGE2 modulates neutrophil activation in vivo.

Similar content being viewed by others

References

  1. Gill, S.R. et al. Metagenomic analysis of the human distal gut microbiome. Science 312, 1355–1359 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Littman, D.R. & Pamer, E.G. Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10, 311–323 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hall, J.A. et al. Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 29, 637–649 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Benson, A., Pifer, R., Behrendt, C.L., Hooper, L.V. & Yarovinsky, F. Gut commensal bacteria direct a protective immune response against Toxoplasma gondii. Cell Host Microbe 6, 187–196 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Slack, E. et al. Innate and adaptive immunity cooperate flexibly to maintain host-microbiota mutualism. Science 325, 617–620 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 8, 421–434 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Vaishnava, S. et al. The antibacterial lectin RegIIIγ promotes the spatial segregation of microbiota and host in the intestine. Science 334, 255–258 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hand, T.W. et al. Acute gastrointestinal infection induces long-lived microbiota-specific T cell responses. Science 337, 1553–1556 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Heimesaat, M.M. et al. Gram-negative bacteria aggravate murine small intestinal TH1-type immunopathology following oral infection with Toxoplasma gondii. J. Immunol. 177, 8785–8795 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Man, S.M., Kaakoush, N.O. & Mitchell, H.M. The role of bacteria and pattern-recognition receptors in Crohn's disease. Nat. Rev. Gastroenterol. Hepatol. 8, 152–168 (2011).

    Article  PubMed  Google Scholar 

  11. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hadis, U. et al. Intestinal tolerance requires gut homing and expansion of FoxP3+ regulatory T cells in the lamina propria. Immunity 34, 237–246 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. Coombes, J.L. et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J. Exp. Med. 204, 1757–1764 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun, C.M. et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 Treg cells via retinoic acid. J. Exp. Med. 204, 1775–1785 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oldenhove, G. et al. Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31, 772–786 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Benson, A. et al. Microbial infection-induced expansion of effector T cells overcomes the suppressive effects of regulatory T cells via an IL-2 deprivation mechanism. J. Immunol. 188, 800–810 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Rivollier, A., He, J., Kole, A., Valatas, V. & Kelsall, B.L. Inflammation switches the differentiation program of Ly6Chi monocytes from antiinflammatory macrophages to inflammatory dendritic cells in the colon. J. Exp. Med. 209, 139–155 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Serbina, N.V., Jia, T., Hohl, T.M. & Pamer, E.G. Monocyte-mediated defense against microbial pathogens. Annu. Rev. Immunol. 26, 421–452 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zigmond, E. et al. Ly6C(hi) Monocytes in the inflamed colon give rise to proinflammatory effector cells and migratory antigen-presenting cells. Immunity 37, 1076–1090 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Kim, Y.G. et al. The Nod2 sensor promotes intestinal pathogen eradication via the chemokine CCL2-dependent recruitment of inflammatory monocytes. Immunity 34, 769–780 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iijima, N., Mattei, L.M. & Iwasaki, A. Recruited inflammatory monocytes stimulate antiviral TH1 immunity in infected tissue. Proc. Natl. Acad. Sci. USA 108, 284–289 (2011).

    Article  PubMed  Google Scholar 

  22. Hohl, T.M. et al. Inflammatory monocytes facilitate adaptive CD4 T cell responses during respiratory fungal infection. Cell Host Microbe 6, 470–481 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dunay, I.R. et al. Gr1+ inflammatory monocytes are required for mucosal resistance to the pathogen Toxoplasma gondii. Immunity 29, 306–317 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Serbina, N.V., Salazar-Mather, T.P., Biron, C.A., Kuziel, W.A. & Pamer, E.G. TNF/iNOS-producing dendritic cells mediate innate immune defense against bacterial infection. Immunity 19, 59–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Fournier, B.M. & Parkos, C.A. The role of neutrophils during intestinal inflammation. Mucosal Immunol. 5, 354–366 (2012).

    Article  CAS  PubMed  Google Scholar 

  26. Gazzinelli, R.T. et al. In the absence of endogenous IL-10, mice acutely infected with Toxoplasma gondii succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ and TNF-α. J. Immunol. 157, 798–805 (1996).

    CAS  PubMed  Google Scholar 

  27. Geissmann, F. et al. Development of monocytes, macrophages, and dendritic cells. Science 327, 656–661 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Scharton-Kersten, T.M., Yap, G., Magram, J. & Sher, A. Inducible nitric oxide is essential for host control of persistent but not acute infection with the intracellular pathogen Toxoplasma gondii. J. Exp. Med. 185, 1261–1273 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jebbari, H., Roberts, C.W., Ferguson, D.J., Bluethmann, H. & Alexander, J. A protective role for IL-6 during early infection with Toxoplasma gondii. Parasite Immunol. 20, 231–239 (1998).

    Article  CAS  PubMed  Google Scholar 

  30. Suzuki, Y. et al. IL-10 is required for prevention of necrosis in the small intestine and mortality in both genetically resistant BALB/c and susceptible C57BL/6 mice following peroral infection with Toxoplasma gondii. J. Immunol. 164, 5375–5382 (2000).

    Article  CAS  PubMed  Google Scholar 

  31. El Kasmi, K.C. et al. Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens. Nat. Immunol. 9, 1399–1406 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Katz, J.B., Muller, A.J. & Prendergast, G.C. Indoleamine 2,3-dioxygenase in T-cell tolerance and tumoral immune escape. Immunol. Rev. 222, 206–221 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. O'Banion, M.K., Sadowski, H.B., Winn, V. & Young, D.A. A serum- and glucocorticoid-regulated 4-kilobase mRNA encodes a cyclooxygenase-related protein. J. Biol. Chem. 266, 23261–23267 (1991).

    CAS  PubMed  Google Scholar 

  34. Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21–28 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. Molloy, M.J., Bouladoux, N. & Belkaid, Y. Intestinal microbiota: shaping local and systemic immune responses. Semin. Immunol. 24, 58–66 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Shi, C. et al. Bone marrow mesenchymal stem and progenitor cells induce monocyte emigration in response to circulating Toll-like receptor ligands. Immunity 34, 590–601 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dunay, I.R., Fuchs, A. & Sibley, L.D. Inflammatory monocytes but not neutrophils are necessary to control infection with Toxoplasma gondii in mice. Infect. Immun. 78, 1564–1570 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Naito, Y., Takagi, T. & Yoshikawa, T. Molecular fingerprints of neutrophil-dependent oxidative stress in inflammatory bowel disease. J. Gastroenterol. 42, 787–798 (2007).

    Article  CAS  PubMed  Google Scholar 

  39. Liesenfeld, O. et al. TNF-α, nitric oxide and IFN-γ are all critical for development of necrosis in the small intestine and early mortality in genetically susceptible mice infected perorally with Toxoplasma gondii. Parasite Immunol. 21, 365–376 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Cassatella, M.A. The neutrophil: one of the cellular targets of interleukin-10. Int. J. Clin. Lab. Res. 28, 148–161 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Fridlender, Z.G. et al. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16, 183–194 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Troy, A.E. et al. IL-27 regulates homeostasis of the intestinal CD4+ effector T cell pool and limits intestinal inflammation in a murine model of colitis. J. Immunol. 183, 2037–2044 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Cronstein, B.N., Daguma, L., Nichols, D., Hutchison, A.J. & Williams, M. The adenosine/neutrophil paradox resolved: human neutrophils possess both A1 and A2 receptors that promote chemotaxis and inhibit O2 generation, respectively. J. Clin. Invest. 85, 1150–1157 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wertheim, W.A. et al. Regulation of neutrophil-derived IL-8: the role of prostaglandin E2, dexamethasone, and IL-4. J. Immunol. 151, 2166–2175 (1993).

    CAS  PubMed  Google Scholar 

  45. Sugimoto, Y. & Narumiya, S. Prostaglandin E receptors. J. Biol. Chem. 282, 11613–11617 (2007).

    Article  CAS  PubMed  Google Scholar 

  46. Goldszmid, R.S. et al. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Immunity 36, 1047–1059 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. FitzGerald, G.A. & Patrono, C. The coxibs, selective inhibitors of cyclooxygenase-2. N. Engl. J. Med. 345, 433–442 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Ohno, H., Morikawa, Y. & Hirata, F. Studies on 15-hydroxyprostaglandin dehydrogenase with various prostaglandin analogues. J. Biochem. 84, 1485–1494 (1978).

    Article  CAS  PubMed  Google Scholar 

  49. Lanas, A. Nonsteroidal anti-inflammatory drugs and cyclooxygenase inhibition in the gastrointestinal tract: a trip from peptic ulcer to colon cancer. Am. J. Med. Sci. 338, 96–106 (2009).

    Article  PubMed  Google Scholar 

  50. Naik, S. et al. Compartmentalized control of skin immunity by resident commensals. Science. 337, 1115–1119 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kühl, A.A. et al. Aggravation of different types of experimental colitis by depletion or adhesion blockade of neutrophils. Gastroenterology 133, 1882–1892 (2007).

    Article  PubMed  Google Scholar 

  52. Anderson, C.F., Oukka, M., Kuchroo, V.J. & Sacks, D. CD4+CD25Foxp3 TH1 cells are the source of IL-10–mediated immune suppression in chronic cutaneous leishmaniasis. J. Exp. Med. 204, 285–297 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Jankovic, D. et al. Conventional T-bet+Foxp3 TH1 cells are the major source of host-protective regulatory IL-10 during intracellular protozoan infection. J. Exp. Med. 204, 273–283 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ostrand-Rosenberg, S. & Sinha, P. Myeloid-derived suppressor cells: linking inflammation and cancer. J. Immunol. 182, 4499–4506 (2009).

    Article  CAS  PubMed  Google Scholar 

  55. Cuenca, A.G. et al. A paradoxical role for myeloid-derived suppressor cells in sepsis and trauma. Mol. Med. 17, 281–292 (2011).

    Article  CAS  PubMed  Google Scholar 

  56. Serhan, C.N., Chiang, N. & Van Dyke, T.E. Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat. Rev. Immunol. 8, 349–361 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khor, B., Gardet, A. & Xavier, R.J. Genetics and pathogenesis of inflammatory bowel disease. Nature 474, 307–317 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Libioulle, C. et al. Novel Crohn disease locus identified by genome-wide association maps to a gene desert on 5p13.1 and modulates expression of PTGER4. PLoS Genet. 3, e58 (2007).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Grunvald, E. et al. Biochemical characterization and protein kinase C dependency of monokine-inducing activities of Toxoplasma gondii. Infect. Immun. 64, 2010–2018 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tepper, R.I., Coffman, R.L. & Leder, P. An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 257, 548–551 (1992).

    Article  CAS  PubMed  Google Scholar 

  61. Mohan, V.P. et al. Effects of tumor necrosis factor α on host immune response in chronic persistent tuberculosis: possible role for limiting pathology. Infect. Immun. 69, 1847–1855 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Rakoff-Nahoum, S., Paglino, J., Eslami-Varzaneh, F., Edberg, S. & Medzhitov, R. Recognition of commensal microflora by Toll-like receptors is required for intestinal homeostasis. Cell 118, 229–241 (2004).

    Article  CAS  PubMed  Google Scholar 

  63. Roos, D.S., Donald, R.G., Morrissette, N.S. & Moulton, A.L. Molecular tools for genetic dissection of the protozoan parasite Toxoplasma gondii. Methods Cell Biol. 45, 27–63 (1994).

    Article  CAS  PubMed  Google Scholar 

  64. Pfefferkorn, E.R. & Pfefferkorn, L.C. Toxoplasma gondii: isolation and preliminary characterization of temperature-sensitive mutants. Exp. Parasitol. 39, 365–376 (1976).

    Article  CAS  PubMed  Google Scholar 

  65. Ismail, A.S. et al. γδ intraepithelial lymphocytes are essential mediators of host-microbial homeostasis at the intestinal mucosal surface. Proc. Natl. Acad. Sci. USA 108, 8743–8748 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Division of Intramural Research, NIAID. We thank members of the Belkaid lab for thoughtful discussion and critical reading of the manuscript, K. Holmes, E. Stregevsky and the NIAID Sorting Facility, K. Beacht and J. Konkel for technical assistance, C. Brown for assistance with tissue staining, O. Schwartz and the NIAID Biological Imaging Facility for assistance with confocal microscopy, T. Meyers and the NIAID Genomic Technologies Section for microarray processing, J. Skinner and the NIAID Bioinformatics and Computational Bioscience Branch for assistance with microarray analysis and L. Hooper and the University of Texas Southwestern Medical Center for sharing protocols. ME-49 clone C1 of T. gondii was provided by M.E. Grigg, NIAID, NIH.

Author information

Authors and Affiliations

Authors

Contributions

J.R.G., E.A.W., M.H.A., N.B., F.L. and Y.B. designed and performed experiments. J.R.G., E.A.W., M.H.A., I.D.C.F., I.J.F., L.Y.K. and Y.B. analyzed the data. J.R.G., N.B. and Y.B. wrote the manuscript.

Corresponding author

Correspondence to Yasmine Belkaid.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10 (PDF 2323 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grainger, J., Wohlfert, E., Fuss, I. et al. Inflammatory monocytes regulate pathologic responses to commensals during acute gastrointestinal infection. Nat Med 19, 713–721 (2013). https://doi.org/10.1038/nm.3189

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.3189

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing