Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice

Abstract

Prostate cancer mortality results from metastasis to bone and hormone-independent tumor growth. Models to study these progressive changes are lacking. Here we describe the propagation of advanced human prostate cancer by direct transfer of surgical samples from patients into immune-deficient male SCID mice. Explants from six of eight patients formed prostate tumors and two showed unique cytogenetic, biologic and molecular features that were retained through six or more passages. One grew in an androgen-independent fashion, whereas the second formed tumors that regressed following castration then regrew. Micrometastatic disease was detected in the hematopoietic tissues of half of the recipient mice. Thus selected specimens of advanced human prostate cancer can be propagated in SCID mice in a manner that recapitulates the clinical transition from androgen-sensitive to androgen-independent growth, accompanied by micrometastasis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ware, J.L. & Maygarden, S.J. Metastatic diversity in human prostatic carcinoma: Implications of growth factors and growth factor receptors for the metastatic phenotype. Pathol. Immunopathol. Res. 8, 231–249 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Pretlow, T.G., Delmoro, C.M., Dilley, G.G., Spadafora, C.G. & Pretlow, T.P. Transplantation of human prostatic carcinoma into nude mice in Matrigel. Cancer Res. 51, 3814–3817 (1991).

    CAS  PubMed  Google Scholar 

  3. Pretlow, T.G. et al. Xenografts of primary human prostatic carcinoma. J. Natl. Cancer Inst. 85, 394–398 (1993).

    Article  CAS  PubMed  Google Scholar 

  4. Luberoff, D.M., Cohen, M.B., Schultz, L.D. & Beamer, W.G. Survival of human prostate carcinoma, benign hyperplastic prostate tissues, and IL-2 activated lymphocytes in scid mice. Prostate 1, 32–41 (1995).

    Article  Google Scholar 

  5. Wainstein, M.A. et al. CWR22: Androgen-dependent xenograft model derived from a primary human prostatic carcinoma. Cancer Res. 54, 6049–6052 (1994).

    CAS  PubMed  Google Scholar 

  6. Liu, A.Y., Corey, E., Bladou, F., Lange, P.H. & Vessella, R.L., Prostatic cell lineage markers: Emergence of BCL2+ cells of human prostate cancer xenograft LuCaP 23 following castration. Intl. J. Cancer 65, 85–89 (1996).

    Article  CAS  Google Scholar 

  7. van Weerden, W. M. et al. Development of seven new human prostate tumor xenograft models and their histopathological characterization. Am. J. Pathol. 149, 1055–1062 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Wu, H.C. et al. Derivation of androgen-independent human LNCaP prostatic cancer cell sublines: Role of bone stromal cells. Intl. J. Cancer 57, 406–412 (1994).

    Article  CAS  Google Scholar 

  9. Noel, A., Simon, N., Raus, J. & Foidart, J.M. Basement membrane components (Matrigel) promote the tumorigenicity of human breast adenocarcinoma MCF7 cells and provide an in vivo model to assess the responsiveness of cells to estrogen. Biochemical Pharmacology 43, 1263–1267 (1992).

    Article  CAS  PubMed  Google Scholar 

  10. Lim, D.J. et al. Growth of an androgen-sensitive human prostate cancer cell line, LNCaP, in nude mice. Prostate 22, 109–118 (1993).

    Article  CAS  PubMed  Google Scholar 

  11. Pang, S. et al. Prostate tissue specificity of the prostate-specific antigen promoter isolated from a patient with prostate cancer. Hum. Gene Ther. 6, 1417–1426 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Horoszewicz, J.S. et al. LNCaP model of human prostatic carcinoma. Cancer Res. 43, 1809–1818 (1983).

    CAS  PubMed  Google Scholar 

  13. Wakasugi, H. et al. Frequent development of murine T-cell lymphomas with TcR alpha/beta+ cells in BALB/c nude mice. Jpn. J. Cancer Res. 86, 1086–1096 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rowe, M. et al. Epstein-Barr virus (EBV)-associated lymphoproliferative disease in the SCID mouse model: Implications for the pathogenesis of EBV-positive lymphomas in man. J. Exp. Med. 173, 147–158 (1991).

    Article  CAS  PubMed  Google Scholar 

  15. Taplin, M.-E. et al. Mutation of the androgen-receptor gene in metastatic androgen-independent prostate cancer. New Engl. J. Med. 332, 1393–1398 (1995).

    Article  CAS  PubMed  Google Scholar 

  16. Gaddipati, P. et al. Frequent detection of codon 877 mutation in the androgen receptor gene in advanced prostate cancers. Cancer Res. 54, 2861–2864 (1994).

    CAS  PubMed  Google Scholar 

  17. Brinkmann, A.O. et al. Androgen receptor mutations. J. Steroid Biochem. Mol. Biol. 53, 443–448 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Newmark, J.R. et al. Androgen receptor gene mutations in human prostate cancer. Proc. Natl. Acad. Sci. USA 89, 6319–6323 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tilley, W.D., Buchanan, G., Hickey, T.E. & Bentel, J.M. Mutations in the androgen receptor gene are associated with progression of human prostate cancer to androgen independence. Clin.Cancer Res. 2, 277–285 (1996).

    CAS  PubMed  Google Scholar 

  20. Veldscholte, J. et al. The androgen receptor in LNCaP cells contains the mutation in the ligand binding domain which affects steroid binding characteristics and response to antiandrogens. J. Steroid Biochem. Mol. Biol. 41, 665–669 (1992).

    Article  CAS  PubMed  Google Scholar 

  21. Sutherland, R.W. et al. Androgen receptor gene mutations are rarely associated with isolated penile hypospadias. J. Urol. 156, 828–831 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Ghossein, R.A. et al. Detection of circulating tumor cells in patients with localized and metastatic prostatic carcinoma: Clinical implications. J. Clin. Oncol. 13, 1195–1200 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Seiden, M.V. et al. Detection of circulating tumor cells in men with localized prostate cancer. J. Clin. Oncol. 12, 2634–2639 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. Wood, D.P., Banks, E.R., Humphreys, S., McRoberts, J.W. & Rangnekar, V.M. Identification of bone marrow micrometastases in patients with prostate cancer. Cancer 74, 2533–2540 (1994).

    Article  PubMed  Google Scholar 

  25. Katz, A.E. et al. Molecular staging of prostate cancer with the use of an enhanced reverse transcriptase-PCR assay. Urology 43, 765–775 (1994).

    Article  CAS  PubMed  Google Scholar 

  26. Brandt, B. et al. Isolation of prostate-derived single cells and cell clusters from human peripheral blood. Cancer Res. 56, 4556–4561 (1996).

    CAS  PubMed  Google Scholar 

  27. Baiocchi, R.A. & Caligiuri, M.A. Low-dose interleukin 2 prevents the development of Epstein-Barr virus (EBV)-associated lymphoproliferative disease in scid/scid mice reconstituted i.p. with EBV-seropositive human peripheral blood lymphocytes. Proc. Natl. Acad. Sci. USA 91, 5577–5581 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Brothman, A.R., Peehl, D.M., Patel, A.M. & McNeal, J.E. Frequency and pattern of karyotypic abnormalities in human prostate cancer. Cancer Res. 50, 3795–3803 (1990).

    CAS  PubMed  Google Scholar 

  29. Debruyne, F.M. et al. Cytogenetics of prostate cancer. Consensus Conference on Diagnosis and Prognostic Parameters in Localized Prostate Cancer. Scand. J. Urol. Nephrol. 162, 65-71-115-27 (1993).

  30. Micale, M.A., Sanford, J.S., Powell, I. J., Sakr, W.A. & Wolman, S.R. Defining the ex tend and nature of cytogenetic events in prostatic adenocarcinoma: Paraffin FISH vs. metaphase analysis. Cancer Gen. Cytogen. 69, 7–12 (1993).

    Article  CAS  Google Scholar 

  31. Cher, M.L. et al. Genetic alterations in untreated metastases and androgen-independent prostate cancer detected by comparative genomic hybridization and allelotyping. Cancer Res. 56, 3091–3102 (1996).

    CAS  PubMed  Google Scholar 

  32. Cooney, K.A. et al. Distinct regions of allelic loss on 13q in prostate cancer. Cancer Res. 56, 1142–1145 (1996).

    CAS  PubMed  Google Scholar 

  33. Gleave, M.E., Hsieh, J.T., Wu, H.C., von Eschenbach, A.C. & Chung, L. W.K. Serum prostate specific antigen levels in mice bearing human prostate LNCaP tumors are determined by tumor volume and endocrine and growth factors. Cancer Res. 52, 1598–1605 (1992).

    CAS  PubMed  Google Scholar 

  34. Nagabhushan, M. et al. CWR22: the first human prostate cancer xenograft with strongly androgen-dependent and relapsed strains both in vivo and in soft agar. Cancer Res. 56, 3042–3046 (1996).

    CAS  PubMed  Google Scholar 

  35. Marcelli, M., Haidacher, S.J., Plymate, S.R. & Birnbaum, R.S. Altered growth and insulin-like growth factor-binding protein-3 production in PC3 prostate carcinoma cells stably transfected with a constitutively active androgen receptor complemen tary deoxyribonucleic acid. Endocrinology 136, 1040–1048 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Umekita, Y., Hiipakka, R.A., Kokontis, J.M. & Shutsung, L. Human prostate tumor growth in athymic mice: inhibition by androgens and stimulation by finasteride. Proc. Natl. Acad. Sci.USA 93, 11802–11807 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shtivelman, E. & Namikawa, R. Species-specific metastasis of human tumor cells in the severe combined immunodeficiency mouse engrafted with human tissue. Proc. Natl. Acad. Sci. USA 92, 4661–4665 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Aldrovandi, G.M. et al. The SCID-hu mouse as a model for HIV-1 infection. Nature 363, 732–736 (1993).

    Article  CAS  PubMed  Google Scholar 

  39. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual, edn.2 (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

  40. Saiki, R.K. et al. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230, 1350–1354 (1985).

    Article  CAS  PubMed  Google Scholar 

  41. Hsu, S.M., Raine, L. & Fanger, H. A comparative study of the peroxidase-antiperoxidase method and an avidin-biotin complex method for studying polypeptide hormones with radioimmunoassay antibodies. Am. J. Clin. Pathol. 75, 734–738 (1981).

    Article  CAS  PubMed  Google Scholar 

  42. Marcelli, M. et al. Definition of the human androgen receptor gene structure permits the identification of mutations that cause androgen resistance: Premature termination of the receptor protein at amino acid residue 588 causes complete androgen resistance. Mol. Endocrinol. 90, 1105–1116 (1990).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klein, K., Reiter, R., Redula, J. et al. Progression of metastatic human prostate cancer to androgen independence in immunodeficient SCID mice. Nat Med 3, 402–408 (1997). https://doi.org/10.1038/nm0497-402

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0497-402

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing