Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Estrogen inhibits the vascular injury response in estrogen receptor α-deficient mice

Abstract

The atheroprotective effects of estrogen in women are well recognized1, but the underlying mechanisms responsible are not well understood. Blood vessel cells express the classic estrogen receptor, ERα (ref. 2—6), and are directly affected by estrogen, which inhibits the development of atherosclerotic and injury-induced vascular lesions78. We have generated mice in which the ERα gene is disrupted9 and have used a mouse model of carotid arterial injury to compare the effects of estrogen on wild-type and estrogen receptor-deficient mice. Increases in vascular medial area and smooth muscle cell proliferation were quantified following vascular injury in ovariectomized mice treated with vehicle or with physiologic levels of 17β-estradiol. Suprisingly, in both wild-type and estrogen receptor-deficient mice, 17β-estradiol markedly inhibited to the same degree all measures of vascular injury. These data demonstrate that estrogen inhibits vascular injury by a novel mechanism that is independent of the classic estrogen receptor, ERα.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Grady, D. et al. Hormone therapy to prevent disease and prolong life in postmenopausal women. Ann. Intern. Med. 117, 1016–1037 (1992).

    Article  CAS  Google Scholar 

  2. Colbum, P. & Buonassis, V. Estrogen-binding sites in endothelial Cell cultures. Science 201, 817–319 (1978).

    Article  Google Scholar 

  3. Orimo, A. et al. Vascular smooth muscle Cells as target for estrogen. Biochem. Biophys. Res. Commun. 195, 730–736 (1993).

    Article  CAS  Google Scholar 

  4. Losordo, D.W., Kearney, M., Kim, E.A., Jekanowski, J. & Isner, J.M. Variable expression of the estrogen receptor in normal and atherosclerotic coronary arteries of premenopausal women. Circulation 89, 1501–1510 (1994).

    Article  CAS  Google Scholar 

  5. Karas, R.H., Patterson, B.L. & Mendelsohn, M.E. Human vascular smooth muscle Cells contain functional estrogen receptor. Circulation 89, 1943–1950 (1994).

    Article  CAS  Google Scholar 

  6. Venkov, C.D., Rankin, A.B. & Vaughan, D.E. Identification of authentic estrogen receptor in cultured endothelial Cells: A potential mechanism for steroid hormone regulation of endothelial function. Circulation 94, 727–733 (1996).

    Article  CAS  Google Scholar 

  7. Mendelsohn, M.E. & Karas, R.H. Estrogen and the blood vessel wall. Curr. Opin. Cardial. 9, 619–626 (1994).

    Article  CAS  Google Scholar 

  8. Farhat, M.Y., Lavigne, M.C. & Ramwell, P.W. The vascular protective effects of estrogen. FASEB J. 10, 615–624 (1996).

    Article  CAS  Google Scholar 

  9. Lubahn, D.B. et al. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA 90, 11162–11166 (1993).

    Article  CAS  Google Scholar 

  10. Sullivan, T.R. Jr. et al. Estrogen inhibits the response-to-injury in a mouse carotid artery model. J. Clin. Invest. 96, 2482–2488 (1995).

    Article  CAS  Google Scholar 

  11. Green, S. et al. Human oestrogen receptor cDNA: Sequence, expression and homology to verb-A. Nature 320, 134–139 (1986).

    Article  CAS  Google Scholar 

  12. Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science 240, 889–895 (1988).

    Article  CAS  Google Scholar 

  13. Horwitz, K.B. & Horwitz, L.D. Canine vascular tissues are targets for androgens, estrogens, progestins, and glucocorticoids. J. Clin. Invest. 69, 750–759 (1982).

    Article  CAS  Google Scholar 

  14. Koike, H., Karas, R.H., Baur, W.E., O'Donnell, T.F. Jr. & Mendelsohn, M.E. Differential-display polymerase chain reaction identifies nucleophosmin as an estrogen-regulated gene in human vascular smooth muscle Cells. J. Vasc Surg. 23, 477–482 (1996).

    Article  CAS  Google Scholar 

  15. Kuiper, G.G.J.M., Enmark, E., Pelto-Huikko, M., Nilsson, S. & Gustafsson, J.Å. Cloning of a novel estrogen receptor expressed in rat prostate and ovary. Proc. Notl. Acad. Sci. USA 93, 5925–5930 (1996).

    Article  CAS  Google Scholar 

  16. Mosselman, S., Polman, J. & Dijkema, R., ERβIdentification and characterization of a novel human estrogen receptor. FEBS Lett. 392, 49–53 (1996).

    Article  CAS  Google Scholar 

  17. Couse, J.F. et al. Analysis of transcription and estrogen insensitivity in the female mouse after targeted disruption of the estrogen receptor gene. Mol. Endocrinol. 9, 1441–1454 (1995).

    CAS  PubMed  Google Scholar 

  18. Lindner, V., Fingerle, J. & Reidy, M.A. Mouse model of arterial injury. Circ. Res. 73, 792–796 (1993).

    Article  CAS  Google Scholar 

  19. Harder, D.R. & Coulson, P.B. Estrogen receptors and effects of estrogen on membrane electrical properties of coronary vascular smooth muscle. J. Cell. Physiol. 100, 375–382 (1979).

    Article  CAS  Google Scholar 

  20. Jiang, C., Sarrel, P.M., Lindsey, D.C., Poole-Wilson, P.A. & Collins, P. Endothelium-independent relaxation of rabbit coronary artery by 17β-oestradiol in vitro. Br. J. Pharmacol. 104, 1033–1037 (1991).

    Article  CAS  Google Scholar 

  21. Zhang, F., Ram, J.L., Standley, P.R. & Sowers, J.R., 17β-Estradiol attenuates voltage-dependent Ca2+ currents in A7r5 vascular smooth muscle Cell line. Am. J. Physiol. 266, C975–C980 (1994).

    Article  CAS  Google Scholar 

  22. Williams, J.K., Adams, M.R., Herrington, D.M. & Clarkson, T.B. Short-term administration of estrogen and vascular responses of atherosclerotic coronary arteries. J. Am. Coll. Cardiol. 20, 452–457 (1992).

    Article  CAS  Google Scholar 

  23. White, R.E., Darkow, D.J. & Lang, J.L.F. Estrogen relaxes coronary arteries by opening BKca, channels through a cGMP-dependent mechanism. Circ. Res. 77, 936–942 (1995).

    Article  CAS  Google Scholar 

  24. Amal, J.F. et al. Ethinylestradiol does not enhance the expression of nitric oxide synthase in bovine endothelial Cells but increases the release of bioactive nitric oxide by inhibiting superoxide anion production. Proc. Natl. Acad. Sci. USA 93, 4108–4113 (1996).

    Article  Google Scholar 

  25. Touchette, N. Man bites dogma: A new role for steroid hormones. J. NIH Res. 2, 71–74 (1990).

    Google Scholar 

  26. Graber, R., Surnida, C., Vallette, G., & Nunez, E.A. . Rapid and long-term effects of 17β-estradiol on PIP2-phospholipase C-specific activity of MCF-7 Cells. Cell. Signal. 5, 181–186 (1993).

    Article  CAS  Google Scholar 

  27. Aronica, S.M., Kraus, W.L. & Katzenellenbogen, B.S. Estrogen action via the cAMP signaling pathway: Stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc. Natl. Acad. Sci. USA 91, 8517–8521 (1994).

    Article  CAS  Google Scholar 

  28. Wehling, M., Neylon, C.B., Fullerton, M., Bobik, A. & Funder, J.W. Nongenomic effects of aldosterone on intraCellular Ca2+ in vascular smooth muscle Cells. Circ. Res. 76, 973–979 (1995).

    Article  CAS  Google Scholar 

  29. Rosen, L.B., Ginty, D.D. & Greenberg, M.E. Calcium regulation of gene expression. Adv. Second Messenger Phosphoprotein Res. 30 225–253 (1995).

    Article  CAS  Google Scholar 

  30. Brindle, P.K. & Montminy, M.R. The CREB family of transcription activators. Curr. Opin. Genet. Dev. 2, 199–204 (1992).

    Article  CAS  Google Scholar 

  31. Fischer-Dzoga, K., Wissler, R. & Vesselinovitch, D. The effect of estradiol on the proliferation of rabbit aortic medial tissue Cells induced by hyperlipemic serum. Exp. Mol. Pathol. 39, 355–363 (1983).

    Article  CAS  Google Scholar 

  32. Farhat, M.Y., Vargas, R., Dingaan, B. & Ramwell, P.W. In vitro effect of oestradiol on thymidine uptake in pulmonary vascular smooth muscle Cell: Role of the endothelium. Br. J. Pharmacol. 107, 679–683 (1992).

    Article  CAS  Google Scholar 

  33. Moraghan, T. et al. Differential response in Cell proliferation to beta estradiol in coronary arterial vascular smooth muscle Cells obtained from mature female versus male animals. Endocrinology 137, 5174–5177 (1996).

    Article  CAS  Google Scholar 

  34. Kolodgie, F.D. et al. Estradiol attenuates directed migration of vascular smooth muscle Cells in vitro. Am. J. Pathol. 148, 969–976 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Johns, A., Freay, A.D., Fraser, W., Korach, K.S. & Rubanyi, G.M. Disruption of estrogen receptor gene prevents 17β estradiol-induced angiogenesis in transgenic mice. Endocrinology 137, 4511–4513 (1996).

    Article  CAS  Google Scholar 

  36. Adams, M.R. et al. Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys: Lack of an effect of added progesterone. Arteriosclerosis 10, 1051–1057 (1990).

    Article  CAS  Google Scholar 

  37. Haarbo, J., Leth-Espensen, P., Strander, S. & Cristiansen, C. Estrogen monotherapy and combined estrogen progestogen replacement therapy attenuate aortic accumulation of cholesterol in ovariectomized cholesterol-fed rabbits. J. Clin. Invest. 87, 1274–1279 (1991).

    Article  CAS  Google Scholar 

  38. Chen, S.J., Li, H.B., Durand, J., Oparil, S. & Chen, Y.F. Estrogen reduces myointimal proliferation after balloon injury of rat carotid artery. Circulation 93, 577–584 (1996).

    Article  CAS  Google Scholar 

  39. Bourassa, P.A.K., Milos, P.M., Gaynor, B.J., Breslow, J.L. & Aiello, R.J. Estrogen reduces atherosclerotic lesion development in apolipoprotein E-deficient mice. Proc. Natl. Acad. Sci. USA 93, 10022–10027 (1996).

    Article  CAS  Google Scholar 

  40. Chang, W.C., Nakao, J., Orimo, H. & Murota, S.I. Stimulation of prostaglandin cyclooxygenase and prostacyclin synthetase activities by estradiol in rat aortic smooth muscle Cells. Biochim. Biophys. Ada 620, 472–482 (1980).

    Article  CAS  Google Scholar 

  41. Hayashi, T., Fukuto, J.M., Ignarro, L.J. & Chaudhuri, G. Basal release of nitric oxide from aortic rings is greater in female rabbits than in male rabbits: Implications for atherosclerosis. Proc. Natl. Acad. Sci. USA 89, 11259–11263 (1992).

    Article  CAS  Google Scholar 

  42. Weiner, C.P. et al. Induction of calcium-dependent nitric oxide synthases by sex hormones. Proc. Natl. Acad. Sci. USA 91, 5212–5216 (1994).

    Article  CAS  Google Scholar 

  43. Caulin-Glaser, T., Watson, G.A., Pardi, R. & Bender, J.R. Effects of 17b-estradiol on cytokine-induced endothelial Cell adhesion molecular expression. J. Clin. Invest. 98, 36–42 (1996).

    Article  CAS  Google Scholar 

  44. White, R., Lees, J.A., Needham, M., Ham, J. & Parker, M. Structural organization and expression of the mouse estrogen receptor. Mol. Endocrinol. 1, 735–744 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iafrati, M., Karas, R., Aronovitz, M. et al. Estrogen inhibits the vascular injury response in estrogen receptor α-deficient mice. Nat Med 3, 545–548 (1997). https://doi.org/10.1038/nm0597-545

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0597-545

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing