Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus

Abstract

Naturally pyrazinamide (PZA)–resistant Mycobacterium bovis and acquired PZA–resistant M. tuberculosis strains lose pyrazinamidase (PZase). To investigate the molecular mechanism of PZA resistance, we have cloned the gene (pncA) encoding M. tuberculosis PZase. Mutations in pncA were identified in both types of PZA–resistant strains, and transformation of these strains with a functional pncA gene restored PZase activity and PZA susceptibility. These findings, besides providing the basis for understanding how PZA works, should have implications for rapid detection of PZA–resistant clinical isolates of M. tuberculosis and also for rapid differentiation of M. bovis from M. tuberculosis strains.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Centers for Disease Control. Nosocomial transmission of multidrug-resistant tuberculosis among HIV-infected persons — Florida and New York, 1988–1991. Mortal. Morbid. Weekly Rep. 40, 585–591 (1991).

  2. Block, A.B. et al. Nationwide survey of drug-resistant tuberculosis in the United States. JAMA 271, 665–671 (1994).

    Article  Google Scholar 

  3. Bloom, B.R. & Murray, C.J.L. Tuberculosis: Commentary on a reemergent killer. Science 257, 1055–1064 (1992).

    Article  CAS  Google Scholar 

  4. Zhang, Y., Heym, B., Alien, B., Young, D. & Cole, S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358, 591–593 (1992).

    Article  CAS  Google Scholar 

  5. Banerjee, A. et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263, 227–230 (1994).

    Article  CAS  Google Scholar 

  6. Telenti, A. et al. Detection of rifampicin-resistant mutations in Mycobacterium tuberculosis. Lancet 341, 647–650 (1993).

    Article  CAS  Google Scholar 

  7. Finken, M., Kirschner, P., Meier, A., Wrede, A. & Bottger, E.C. Molecular basis of streptomycin resistance in Mycobacterium tuberculosis: Alterations of the ribosomal protein S12 gene and point mutations within a functional 16S ribosomal RNA pseudoknot. Mol. Microbiol. 9, 1239–1246 (1993).

    Article  CAS  Google Scholar 

  8. Mitchison, D.A. The action of antituberculosis drugs in short course chemotherapy. Tubercle 66, 219–225 (1985).

    Article  CAS  Google Scholar 

  9. McCune, R.M., Tompsett, R. & McDermott, W. The fate of Mycobacterium tuberculosis in mouse tissues as determined by the microbial enumeration technique. II. The conversion of tuberculous infection to the latent state by administration of pyrazinamide and a companion drug. J. Exp. Med. 104, 763–802 (1956).

    Article  CAS  Google Scholar 

  10. Heifets, L. & Lindholm-Levy, P. Pyrazinamide sterilizing activity in vitro against semi-dormant Mycobacterium tuberculosis bacterial populations. Am. Rev. Respir. Dis. 145, 1223–1225 (1992).

    Article  CAS  Google Scholar 

  11. Yeager, R.L., Munroe, W.G. & Dessau, F.I. Pyrazinamide (Aldinamide) in the treatment of pulmonary tuberculosis. Am. Rev. Tuberc. 65, 523–534 (1952).

    CAS  PubMed  Google Scholar 

  12. Konno, K., Feldman, F.M. & McDermott, W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am. Rev. Respir. Dis. 95, 461–469 (1967).

    CAS  PubMed  Google Scholar 

  13. McClatchy, J.K., Tsang, A.Y. & Cernich, M.S. Use of pyrazinamidase activity in Mycobacterium tuberculosis as a rapid method for determination of pyrazinamide susceptibility. Antimicrob. Agent. Chemother. 20, 556–557 (1981).

    Article  CAS  Google Scholar 

  14. Trivedi, S.S. & Desai, S.G. Pyrazinamidase activity of Mycobacterium tuberculosis — a test of sensitivity to pyrazinamide. Tubercle 68, 221–224 (1987).

    Article  CAS  Google Scholar 

  15. Konno, K., Nagayama, H. & Oka, S. Nicotinamidase in mycobacteria: A method for distinguishing bovine type tubercle bacilli from other mycobacteria. Nature 184, 1743–1744 (1959).

    Article  CAS  Google Scholar 

  16. Collins, C.H., Grange, J.M. & Yates, M.D. Tuberculosis Bacteriology. 59–66 (Butterworths, London, 1985).

    Google Scholar 

  17. Foster, J.W. & Moat, A.G. Nicotinamide adenine dinucleotide biosynthesis and pyridine nucleotide cycle metabolism in microbial systems. Microbiol. Rev. 44, 83–105 (1980).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bonicke, R. & Lisboa, B.P. Typendifferenzierung der Tuberkulosebakterien mit Hilfe des Nikotinamidasetests. Tuberkuloseartzt 13, 377 (1959).

    CAS  Google Scholar 

  19. Jerlstrom, P.G., Bezjak, D.A., Jennings, M.P. & Beacham, I.R. Structure and expression in Escherichia coli K-12 of the L-asparaginase I-encoding ansA gene and its flanking regions. Gene 78, 37–46 (1989).

    Article  CAS  Google Scholar 

  20. Mackaness, G.B. The intracellular activation pyrazinamide and nicotinamide. Am. Rev. Tuberc. 74, 718–728 (1956).

    CAS  PubMed  Google Scholar 

  21. Tarshis, M.S. & Weed, W.A. Lack of significant in vitro sensitivity of Mycobacterium tuberculosis to pyrazinamide on three different solid media. Am. Rev. Tuberc. 67, 391–395 (1953).

    CAS  PubMed  Google Scholar 

  22. McDermott, W. & Tomsett, R. Activation of pyrazinamide and nicotinamide in acidic environment in vitro. Am. Rev. Tuberc. 70, 748–754 (1954).

    CAS  PubMed  Google Scholar 

  23. Crowle, A.J., Dahl, R., Ross, E. & May, M.H. Evidence that vesicles containing living, virulent Mycobacterium tuberculosis or M. avium in cultured human macrophages are not acidic. Infect. Immun. 59, 1823–1831 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. World Health Organization. Zoonotic tuberculosis (Mycobacterium bovis): Memorandum from a WHO meeting. Bull. World Health Organ. 72, 851–857 (1994).

  25. Rodriguez, J.G., Mejia, G.A., Del Portillo, P., Patarroyo, M.E. & Murillo, L.A. Species-specific identification of Mycobacterium bovis by PCR. Microbiology. 141, 2131–2138 (1995).

    Article  Google Scholar 

  26. Orita, M., Suzuki, Y., Sekiya, T. & Hayashi, K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics 5, 874–879 (1989).

    Article  CAS  Google Scholar 

  27. Dickinson, J.M. & Mitchison, D.A. Observation in vitro on the suitability of pyrazinamide for intermittent chemotherapy of tuberculosis. Tubercle 51, 389–396 (1970).

    Article  CAS  Google Scholar 

  28. Klemens, S.P., Sharpe, C.A. & Cynamon, M.H. Activity of pyrazinamide in a murine model against Mycobacterium tuberculosis isolates with various levels of in vitro susceptibility. Antimicrob. Agent. Chemother. 40, 14–16 (1996).

    Article  CAS  Google Scholar 

  29. Zhang, Y. et al. Alterations in the superoxide dismutase gene of an isoniazid-resistant strain of Mycobacterium tuberculosis. Infect. Immun. 60, 2160–2165 (1992).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Foster, J.W., Kinney, D.M. & Moat, A.G. Pyridine nucleotide cycle of Salmonella typhimurium: Isolation and characterization of pncA, pncB, and pncC mutants and utilization of exogenous nicotinamide adenine dinucleotide. J. Bacterial. 137, 1165–1175 (1979).

    CAS  Google Scholar 

  31. Saiki, R.K. et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239, 487–491 (1988).

    Article  CAS  Google Scholar 

  32. Sambrook, J., Fritsch, E.F. & Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989).

    Google Scholar 

  33. Garbe, T. et al. Transformation of mycobacterial species using hygromycin resistance as selectable marker. Microbiology 140, 133–138 (1994).

    Article  CAS  Google Scholar 

  34. Zhang, Y., Garbe, T. & Young, D. Transformation with katG restores isoniazid sensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol. Microbiol. 8, 521–524 (1993).

    Article  CAS  Google Scholar 

  35. Wayne, L.G. Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am. Rev. Respir. Dis. 109, 147–151 (1974).

    CAS  PubMed  Google Scholar 

  36. Skinner, P. et al. A bone marrow-derived macrophage model for evaluating efficacy of antimycobacterial drugs under relevant physiological conditions. Antimicrob. Agent. Chemother. 38, 2557–2563 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scorpio, A., Zhang, Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 2, 662–667 (1996). https://doi.org/10.1038/nm0696-662

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0696-662

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing