Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tumour suppression by the human von Hippel-Lindau gene product

Abstract

A partial cDNA sequence for the gene linked to the von Hippel–Lindau (VHL) syndrome was reported in 1993. Mutation or loss of both VHL alleles has been documented in sporadic renal cell carcinomas and in the neoplasms that arise in von Hippel–Lindau kindreds. We have determined that the protein product of the VHL gene is an approximately 30 kilodalton cytoplasmic protein. The renal carcinoma cell line 786-O is known to harbour a VHL mutation and, as shown here, fails to produce a wild-type VHL protein. Reintroduction of wild-type, but not mutant, VHL into these cells had no demonstrable effect on their growth in vitro but inhibited their ability to form tumours in nude mice.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Malkin, D. et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms Science 250, 1233–1238 (1990).

    Article  CAS  Google Scholar 

  2. McKusick, V.A. Inheritance in ManThe Johns Hopkins University Press, Baltimore and London,(1992).

  3. Latif, F. et al. Identification of the von Hippel-Lindau disease tumor suppressor gene Science 260, 1317–1320 (1993).

    Article  CAS  Google Scholar 

  4. Chen, F. et al. Germ line mutations in the von Hippel-Lindau disease tumor suppressor gene: Correlations with phenotype Hum. Mutat. 5, 66–75 (1995).

    Article  CAS  Google Scholar 

  5. Shuin, T. et al. Frequent somatic mutations and loss of heterozygosity of the von Hippel-Lindau tumor suppressor gene in primary human renal cell carcinomas Cancer Res. 54, 2852–2855 (1994).

  6. Gnarra, J.R. et al. Mutations of the VHL tumour suppressor gene in renal carcinoma. Nature Genet 7, 85–90 (1994).

    Article  CAS  Google Scholar 

  7. Kanno, H. et al. Somatic mutations of the von Hippel-Lindau Tumor supressor gene in sporadic central nervous systems hemangioblastomas. Cancer Res. 54, 4845–4847 (1994).

    CAS  PubMed  Google Scholar 

  8. Herman, J.G. et al. Silencing of the VHL tumor-suppressor gene by DNA methylation in renal carcinoma. Proc. natn. Acad. Sci. U.S.A. 91, 9700–9704 (1994).

    Article  CAS  Google Scholar 

  9. Lathe, R. Synthetic oligonucleotide probes deduced from amino acid sequence data, theoretical and practical considerations. J. molec. Biol 183, 1–12 (1985).

    Article  CAS  Google Scholar 

  10. Kuzmin, I. et al. Identification of the promoter of the human von Hippel-Lindau disease tumor suppressor gene. Oncogene (in the press).

  11. Kozak, M. At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J. molec. Biol 196, 947–950 (1987).

    Article  CAS  Google Scholar 

  12. Kozak, M. The scanning model for translation: An update. J. Cell Biol 108, 229–241 (1989).

    Article  CAS  Google Scholar 

  13. Shimizu, M. et al. Introduction of normal chromosome 3p modulates the tumori-genicity of a human renal cell carcinoma cell line YCR. Oncogene 5, 185–194 (1990).

    CAS  PubMed  Google Scholar 

  14. Yoshida, M.A. et al. in vivo growth suppression and morphological change in a human renal cell carcinoma cell line by the introduction of normal chromosome 3 via microcell fusion. Molec. Carcinog. 9, 114–121 (1994).

    Article  CAS  Google Scholar 

  15. Golde, D.W. & Hocking, W.G. Mechanisms and management. Ann. intern. Med. 95, 71–87 (1981).

    Article  CAS  Google Scholar 

  16. Linehan, W.M., Lerman, M.I. & Zbar, B. Identification of the von Hippel-Lindau (VHL) gene. JAMA 273, 564–70 (1995).

    Article  CAS  Google Scholar 

  17. Graham, F.L., Smiley, J., Russell, W.C. & Nairn, R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36, 59–72 (1977).

    Article  CAS  Google Scholar 

  18. Graham, F.L. & van der Eb, A. A new technique for the assay of infectivity of human adenovirus 5 DNA. J. Virol. 52, 456–467 (1973).

    Article  CAS  Google Scholar 

  19. Kaelin, W.G., Ewen, M.E. & Livingston, D.M. Definition of the minimal simian virus 40 large T antigen- and adenovirus E1A-binding domain in the retinoblastoma gene product. Molec. cell. Biol 10, 3761–3769 (1990).

    Article  CAS  Google Scholar 

  20. DeCaprio, J.A. et al. SV40 large T antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54, 275–283 (1988).

    Article  CAS  Google Scholar 

  21. Kaelin, W.G. et al. Expression cloning of a cDNA encoding a retinoblastoma-binding protein with E2F-like properties. Cell 70, 351–364 (1992).

    Article  CAS  Google Scholar 

  22. Krek, W., Livingston, D.M. & Shirodkar, S. Binding to DNA and retinoblastoma gene product promoted by complex formation of different E2F family members. Science 262, 1557–1560 (1993).

    Article  CAS  Google Scholar 

  23. Smith, D.B. & Johnson, K.S. Single-step purification of polypeptides expressed in Escherichia coli as fusions with glutathione S-transferase. Gene 67, 31–40 (1988).

    Article  CAS  Google Scholar 

  24. Qin, X.-Q., Livingston, D.M., Kaelin, W.G. & Adams, P. Deregulated E2F1 expression leads to S-phase entry and p53-mediated apoptosis. Proc. natn. Acad. Sci. U.S.A. 91, 10918–10922 (1994).

    Article  CAS  Google Scholar 

  25. Qin, X.-Q. et al. The transcription factor E2F1 is a downstream target of RB action. Molec. cell. Biol 15, 742–755 (1995).

    Article  CAS  Google Scholar 

  26. Harlow, E. & Lane, D. Antibodies —A laboratory manual (Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, 1988).

    Google Scholar 

  27. Lee, W.-H. et al. The retinoblastoma susceptibility gene encodes a nuclear phosphoprotein associated with DNA binding activity. Nature 329, 642–645 (1987).

    Article  CAS  Google Scholar 

  28. Radke, K.V. et al. Membrane association of a 36,000-Dalton substrate for tyro-sine phosphorylation in chicken embryo fibroblasts transformed by avian sarcoma viruses. J. cell Biol 97, 1601–1611 (1983).

    Article  CAS  Google Scholar 

  29. Qin, X.-Q., Chittenden, T., Livingston, D.M. & Kaelin, W.G. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6, 953–964 (1992).

    Article  CAS  Google Scholar 

  30. Chomczynski, P. & Sacchi, N. Single step method of RNA isolation by acid guadinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 162, 156–159 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iliopoulos, O., Kibel, A., Gray, S. et al. Tumour suppression by the human von Hippel-Lindau gene product. Nat Med 1, 822–826 (1995). https://doi.org/10.1038/nm0895-822

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm0895-822

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing